Scheme 2 Mechanistic rationale for ligand control in enal-alkyne couplings.
2 (a) J. Montgomery and A. V. Savchenko, J. Am. Chem. Soc., 1996,
118, 2099–2100; (b) A. Herath, B. B. Thompson and J. Montgomery,
J. Am. Chem. Soc., 2007, 129, 8712–8713; (c) A. Herath and
J. Montgomery, J. Am. Chem. Soc., 2008, 130, 8132–8133;
(d) W. Li, A. Herath and J. Montgomery, J. Am. Chem. Soc., 2009,
131, 17024–17029; (e) For related cobalt-catalyzed processes:
H. T. Chang, T. T. Jayanth, C. C. Wang and C. H. Cheng, J. Am.
Chem. Soc., 2007, 129, 12032–12041.
3 (a) A. Herath and J. Montgomery, J. Am. Chem. Soc., 2006, 128,
14030–14031; (b) A. D. Jenkins, A. Herath, M. Song and
J. Montgomery, J. Am. Chem. Soc., 2011, 133, 14460–14466;
(c) H. T. Chang, T. T. Jayanth and C. H. Cheng, J. Am. Chem.
Soc., 2007, 129, 4166–4167; (d) V. M. Williams, J. R. Kong, B. J. Ko,
Y. Mantri, J. S. Brodbelt, M. H. Baik and M. J. Krische, J. Am.
Chem. Soc., 2009, 131, 16054–16062; (e) M. Ohashi, T. Taniguchi and
S. Ogoshi, J. Am. Chem. Soc., 2011, 133, 14900–14903.
Scheme 3 Alternate pathways for accessing products 5a and 6a.
(BEt3) allows clean production of the methyl ester product 6a,
likely involving the intermediacy of 13 and 12 (Scheme 3).4,13
Formation of product 6a was futher optimized by the use of
N-heterocyclic carbene ligands.4
4 A. Herath, W. Li and J. Montgomery, J. Am. Chem. Soc., 2008,
130, 469–471.
5 (a) S. Ikeda, H. Yamamoto, K. Kondo and Y. Sato, Organo-
metallics, 1995, 14, 5015–5016; (b) J. Montgomery, E. Oblinger and
A. V. Savchenko, J. Am. Chem. Soc., 1997, 119, 4911–4920.
6 (a) Y. Ni, K. K. D. Amarasinghe and J. Montgomery, Org. Lett.,
2002, 4, 1743–1745; (b) Y. Ni, R. M. Kassab, M. V. Chevliakov
and J. Montgomery, J. Am. Chem. Soc., 2009, 131, 17714–17718.
7 S. Ikeda and Y. Sato, J. Am. Chem. Soc., 1994, 116, 5975–5976.
8 M. V. Chevliakov and J. Montgomery, Angew. Chem., Int. Ed.,
1998, 37, 3144–3146.
9 (a) C. M. Yang, M. Jeganmohan, K. Parthasarathy and C. H. Cheng,
Org. Lett., 2010, 12, 3610–3613; (b) T. T. Jayanth and C. H. Cheng,
Angew. Chem., Int. Ed., 2007, 46, 5921–5924.
10 M. Kimura, A. Ezoe, K. Shibata and Y. Tamaru, J. Am. Chem.
Soc., 1998, 120, 4033–4034.
In conclusion, an interesting array of cyclic and acyclic
products are obtained by the nickel-catalyzed coupling of
enals and alkynes. Simple variation of ligand structure has a
major impact on the reaction outcome, and a mechanistic
scheme formulated allowed rational optimization of each of
the possible reaction outcomes. A noteworthy feature of this
study is the use of stable electron-rich triaryl phosphines that
serve as a convenient replacement for more sensitive trialkyl-
phosphines in reductive cycloadditions.
This work was supportedby NSF grant CHE-1012270.
11 S. J. Patel and T. F. Jamison, Angew. Chem., Int. Ed., 2003, 42,
1364–1367.
12 K. K. D. Amarasinghe, S. K. Chowdhury, M. J. Heeg and
J. Montgomery, Organometallics, 2001, 20, 370–372.
Notes and references
1 (a) J. Montgomery, Acc. Chem. Res., 2000, 33, 467–473;
(b) J. Montgomery, Angew. Chem., Int. Ed., 2004, 43, 3890–3908;
(c) R. M. Moslin, K. Miller-Moslin and T. F. Jamison, Chem.
Commun., 2007, 4441–4449; (d) M. Jeganmohan and C. H. Cheng,
Chem.–Eur. J., 2008, 14, 10876–10886.
13 For other examples of catalytic processes that proceed by transfer
hydrogenation: (a) J. F. Bower, E. Skucas, R. L. Patman and
M. J. Krische, J. Am. Chem. Soc., 2007, 129, 15134–15135;
(b) J. F. Bower, I. S. Kim, R. L. Patman and M. J. Krische,
Angew. Chem., Int. Ed., 2009, 48, 34–46.
c
1116 Chem. Commun., 2012, 48, 1114–1116
This journal is The Royal Society of Chemistry 2012