Bioconjugate Chemistry
Article
visualization of gene expression using magnetic resonance imaging.
Nat. Biotechnol. 18, 321−325.
(6) Chang, Y. T., Cheng, C. M., Su, Y. Z., Lee, W. T., Hsu, J. S., Liu,
G. C., Cheng, T. L., and Wang, Y. M. (2007) Synthesis and
characterization of a new bioactivated paramagnetic gadolinium(111)
complex [Gd(DOTA-FPG)(H2O)] for tracing gene expression.
Bioconjugate Chem. 18, 1716−1727.
(7) Cui, W., Otten, P., Li, Y., Koeneman, K., Yu, J., and Mason, R. P.
(2004) A novel NMR approach to assessing gene transfection:
4-fluoro-2-nitrophenyl-β-D-galactopyranoside as a prototype reporter
molecule for β-galactosidase. Magn. Reson. Med. 51, 616−20.
(8) Liu, L., Kodibagkar, V. D., Yu, J.-X., and Mason, R. P. (2007) 19F-
NMR detection of lacZ gene expression via the enzymic hydrolysis of
2-fluoro-4-nitrophenyl β-D-galactopyranoside in vivo in PC3 prostate
tumor xenografts in the mouse. FASEB J. 21, 2014−2019.
(9) Yu, J. X., Kodibagkar, V. D., Liu, L., and Mason, R. P. (2008) A
19F NMR Approach using Reporter Molecule Pairs to Assess
β-Galactosidase in Human Xenograft Tumors in Vivo. NMR Biomed.
21, 704−12.
(22) Kodibagkar, V. D., Yu, J., Liu, L., Hetherington, H. P., and
Mason, R. P. (2006) Imaging β-galactosidase activity using 19F
chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-
nitrophenol-β-D-galactopyranoside. Magn. Reson. Imaging 24, 959−
962.
(23) Yu, J. X., Liu, L., Kodibagkar, V. D., Cui, W., and Mason, R. P.
(2006) Synthesis and Evaluation of Novel Enhanced Gene Reporter
Molecules: Detection of b-Galactosidase Activity Using 19F NMR of
Trifluoromethylated Aryl β-D-Galactopyranosides. Bioorg. Med. Chem.
14, 326−33.
(24) Cui, W., Liu, L., Kodibagkar, V. D., and Mason, R. P. (2010)
1
S-Gal®, A novel H MRI reporter for β-galactosidase. Magn. Reson.
Med. 64, 65−71.
(25) Bengtsson, N. E., Brown, G., Scott, E. W., and Walter, G. A.
(2010) lacZ as a Genetic Reporter for Real-Time MRI. Magn. Reson.
Med. 63, 745−753.
(26) Dubois, J. E., Fakhrayan, H., Doucet, J. P., and Chahine, J. M. E.
(1992) Kinetic and Thermodynamic Study of Complex-Formation
between Iron(Ii) and Pyridoxal Isonicotinoylhydrazone and Other
Synthetic Chelating-Agents. Inorg. Chem. 31, 853−859.
(10) Mizukami, S., Matsushita, H., Takikawa, R., Sugihara, F.,
Shirakawa, M., and Kikuchi, K. (2011) 19F MRI detection of
β-galactosidase activity for imaging of gene expression. Chem. Sci. 2,
1151−1155.
(27) Kalinowski, D. S., and Richardson, D. R. (2005) The Evolution
of Iron Chelators for the Treatment of Iron Overload Disease and
Cancer. Pharmacol. Rev. 57, 547−583.
(28) Yu, Y., Kalinowski, D. S., Kovacevic, Z., Siafakas, A. R., Jansson,
P. J., Stefani, C., Lovejoy, D. B., Sharpe, P. C., Bernhardt, P. V., and
Richardson, D. R. (2009) Thiosemicarbazones from the Old to New:
Iron Chelators That Are More Than Just Ribonucleotide Reductase
Inhibitors. J. Med. Chem. 52, 5271−5294.
(29) Yu, J. X., Otten, P., Ma, Z., Cui, W., Liu, L., and Mason, R. P.
(2004) A Novel NMR Platform for Detecting Gene Transfection:
Synthesis and Evaluation of Fluorinated Phenyl β-D-Galactosides with
Potential Application for Assessing LacZ Gene Expression. Bio-
conjugate Chem. 15, 1334−1341.
(30) Yu, J. X., Ma, Z., Li, Y., Koeneman, K. S., Liu, L., and Mason,
R. P. (2005) Synthesis and Evaluation of a Novel Gene Reporter
Molecule: Detection of β-galactosidase activity Using 19F NMR of a
Fluorinated Vitamin B6 conjugate. Med. Chem. 1, 255−262.
(31) Wehrman, T. S., von Degenfeld, G., Krutzik, P., Nolan, G. P.,
and Blau, H. M. (2006) Luminescent imaging of beta-galactosidase
activity in living subjects using sequential reporter-enzyme lumines-
cence. Nat. Methods 3, 295−301.
(32) Whitnall, M., Howard, J., Ponka, P., and Richardson, D. R.
(2006) A class of iron chelators with a wide spectrum of potent
antitumor activity that overcomes resistance to chemotherapeutics.
Proc. Natl. Acad. Sci. U.S.A. 103, 14901−14906.
(11) Hanaoka, K., Kikuchi, K., Terai, T., Komatsu, T., and Nagano,
T. (2008) A Gd3+-based magnetic resonance imaging contrast agent
sensitive to beta-galactosidase activity utilizing a receptor-induced
magnetization enhancement (RIME) phenomenon. Chem.Eur. J. 14,
987−995.
(12) Arena, F., Singh, J. B., Gianolio, E., Stefania, R., and Aime, S.
(2011) beta-Gal Gene Expression MRI Reporter in Melanoma Tumor
Cells. Design, Synthesis, and in Vitro and in Vivo Testing of a Gd(III)
Containing Probe Forming a High Relaxivity, Melanin-Like Structure
upon beta-Gal Enzymatic Activation. Bioconjugate Chem. 22, 2625−
2635.
(13) Kamiya, M., Kobayashi, H., Hama, Y., Koyama, Y., Bernardo, M.,
Nagano, T., Choyke, P. L., and Urano, Y. (2007) An enzymatically
activated fluorescence probe for targeted tumor imaging. J. Am. Chem.
Soc. 129, 3918−3929.
(14) Tung, C. H., Zeng, Q., Shah, K., Kim, D. E., Schellingerhout, D.,
and Weissleder, R. (2004) In vivo imaging of beta-galactosidase
activity using far red fluorescent switch. Cancer Res. 64, 1579−83.
(15) Josserand, V., Texier-Nogues, I., Huber, P., Favrot, M. C., and
Coll, J. L. (2007) Non-invasive in vivo optical imaging of the lacZ and
luc gene expression in mice. Gene Ther. 14, 1587−1593.
(16) Li, L., Zemp, R. J., Lungu, G., Stoica, G., and Wang, L. H. V.
(2007) Photoacoustic imaging of lacZ gene expression in vivo.
J. Biomed. Optics 12, 020504.
(17) Kamiya, M., Asanuma, D., Kuranaga, E., Takeishi, A., Sakabe,
M., Miura, M., Nagano, T., and Urano, Y. (2011) beta-Galactosidase
Fluorescence Probe with Improved Cellular Accumulation Based on a
Spirocyclized Rhodol Scaffold. J. Am. Chem. Soc. 133, 12960−12963.
(18) Liu, L., and Mason, R. P. (2010) Imaging beta-Galactosidase
Activity in Human Tumor Xenografts and Transgenic Mice Using a
Chemiluminescent Substrate. PLOS One 5, e12024.
(19) Lee, K. H., Byun, S. S., Choi, J. H., Paik, J. Y., Choe, Y. S., and
Kim, B. T. (2004) Targeting of lacZ reporter gene expression with
radioiodine-labelled phenylethyl-beta-d-thiogalactopyranoside. Eur. J.
Nucl. Med. Mol. Imaging 31, 433−8.
(20) Celen, S., Deroose, C., de Groot, T., Chitneni, S. K., Gijsbers, R.,
Debyser, Z., Mortelmans, L., Verbruggen, A., and Bormans, G. (2008)
Synthesis and evaluation of F-18- and C-11-labeled phenyl-
galactopyranosides as potential probes for in vivo visualization of
LacZ gene expression using positron emission tomography. Bio-
conjugate Chem. 19, 441−449.
(21) Van Dort, M. E., Lee, K. C., Hamilton, C. A., Rehemtulla, A.,
and Ross, B. D. (2008) Radiosynthesis and Evaluation of 5-[I-125]-
Iodoindol-3-yl-beta-D-Galactopyranoside as a beta-Galactosidase Imaging
Radioligand. Mol. Imaging 7, 187−197.
(33) Richardson, D. R., Kalinowski, D. S., Lau, S., Jansson, P. J., and
Lovejoy, D. B. (2009) Cancer cell iron metabolism and the
development of potent iron chelators as anti-tumour agents. Biochim.
Biophys. Acta 1790, 702−717.
(34) Yu, J. X., Kodibagkar, V., Cui, W., and Mason, R. P. (2005) 19F:
a versatile reporter for non-invasive physiology and pharmacology
using magnetic resonance. Curr. Med. Chem. 12, 818−848.
(35) Dresselaers, T., Theys, J., Nuyts, S., Wouters, B., de Bruijn, E.,
Anne, J., Lambin, P., Van Hecke, P., and Landuyt, W. (2003) Non-
invasive F-19 MR spectroscopy of 5-fluorocytosine to 5-fluorouracil
conversion by recombinant Salmonella in tumours. Br. J. Cancer 89,
1796−1801.
(36) Senanayake, P. K., Kenwright, A. M., Parker, D., and van der
Hoorn, S. K. (2007) Responsive fluorinated lanthanide probes for
F-19 magnetic resonance spectroscopy. Chem. Commun., 2923−2925.
(37) Takaoka, Y., Kiminami, K., Mizusawa, K., Matsuo, K., Narazaki,
M., Matsuda, T., and Hamachi, I. (2011) Systematic Study of Protein
Detection Mechanism of Self-Assembling (19)F NMR/MRI Nano-
probes toward Rational Design and Improved Sensitivity. J. Am. Chem.
Soc. 133, 11725−11731.
(38) Tanaka, K., Kitamura, N., and Chujo, Y. (2011) Bimodal
Quantitative Monitoring for Enzymatic Activity with Simultaneous
Signal Increases in (19)F NMR and Fluorescence Using Silica
602
dx.doi.org/10.1021/bc200647q | Bioconjugate Chem. 2012, 23, 596−603