In particular, aryl-fused BODIPY dyes possess high rigid-
ity in their structures. High rigidity of π-systems leads to a
high fluorescence quantum yield in solution as well as
strong intermolecular πꢀπ interactions in the solid state,
which are beneficial for applications as π-functional ma-
terials. The conventional method for synthesis of aryl-
fused BODIPY dyes is a condensationꢀoxidation seque-
nce starting with π-extended fused pyrroles such as furo-
pyrrole.3aꢀc In contrast, the oxidative fusion strategy of
BODIPYs with peripheral aryl moieties is considered to
be a straightforward alternative route. However, such
examples are limited to the recent work by Wu et al.,
who reported synthesis of perylene- and porphyrin-fused
BODIPYs through an oxidative fusion reaction withmeso-
substituents.3d,e Along this line, we decided to develop
a novel strategy for synthesis of aryl-fused BODIPYs
through an oxidative cyclization of β-aryl groups. Here,
we report the synthetic procedure as well as application of a
biphenyl-fused BODIPY dye as an n-type semiconducting
material.
Scheme 2 shows the synthetic route and condition for
a biphenyl-fused BODIPY. SuzukiꢀMiyaura coupling
of 2,6-dibromo BODIPY 25 with 2-biphenylboronic
acid afforded biphenyl BODIPY 3 in 82% yield. Ox-
idative cyclization of biphenyl BODIPY 3 by PIFAꢀ
Figure 1. (a) UVꢀvis absorption spectra of 1 (R = 2,4,6-
trimethylphenyl; black), 3 (red), and 4 (blue). (b) Fluorescence
spectra of 1 (black), 3 (red), and 4 (blue) measured in CH2Cl2. (c)
UVꢀvis absorption spectrum of thin film state of 4.
6
BF3 OEt2 at ꢀ78 ꢀC proceeded smoothly to furnish
3
biphenyl-fused BODIPY 4 as a sole product in 65%
yield.
Single crystal X-ray diffraction analysis revealed the
molecular structure of 4 (Figure 2). BODIPY 4 exhibited
π-interactions through peripheral fused-biphenyl moieties,
in which the interplanar distance is 3.48 A. Interestingly,
the BODIPY units adopt a 1-D infinite stack (Figure 2c),
which is known to be favorable for organic semiconductors.7
The intermolecular πꢀπ interactions in the solid state were
further confirmed by the UVꢀvis absorption spectrum in
Figure 1a,b shows the absorption and emission spectra
of fused BODIPY 4 in CH2Cl2, which exhibit substantial
red-shifts in comparison to biphenyl BODIPY 3 due
to a decrease in the HOMOꢀLUMO gap (vide infra).
BODIPY 4 showed an intense absorption band at 673 nm
with rather high absorption coefficients (ε(λmax) = 1.4 ꢁ
105 Mꢀ1 cmꢀ1) (Table 1). The fluorescence quantum yield
of 4 is high enough, despite the rather small HOMOꢀLU-
MO gap (Φ = 0.51). The lower fluorescence quantum
yield of 3 could be due to partial charge transfer character
of 3 (Supporting Information).
(2) (a) Deniz, E.; Lsbasar, G. C.; Bozdemir, O. A.; Yildirim, L. T.;
Siemiarczuk, A.; Akkaya, E. U. Org. Lett. 2008, 10, 3401. (b) Adarsh, N.;
Avirah., R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720. (c) Buyukcakir, O.;
Bozdemir, A.; Kolemen, S.; Erbas, S.; Akkaya, E. U. Org. Lett. 2009, 11,
4644. (d) Rihn, S.; Erdem, M.; De Nicola, A.; Retailleau, P.; Ziessel, R.
Org. Lett. 2011, 13, 1926. (e) Bonardi, L.; Ulrich, G.; Ziessel., R. Org.
Lett. 2008, 10, 2183.
(3) (a) Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.;
Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550. (b) Samuel, G. A.; Polreis,
J.; Biradar, V.; You, Y. Org. Lett. 2011, 35, 3885. (c) Descalzo, A B.; Xu,
H.-J.; Xue, Z.-L.; Hoffmann, K.; Shen, Z.; Weller, M. G.; You, X.-Z.;
Rurack, K. Org. Lett. 2008, 10, 1581. (d) Jiao, C.; Huwang, K.-W.; Wu,
J. Org. Lett. 2011, 13, 632. (e) Jiao, C.; Zhu, L.; Wu, J. Chem.;Eur. J.
2011, 17, 6610.
Scheme 2. Synthesis of a Biphenyl-Fused BODIPYa
(4) (a) Zhao, W. M.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44,
1677. (b) Gresser, R; Hummert, M.; Hartmann, H.; Leo, K.; Riede, M.
Chem.;Eur. J. 2011, 17, 2939. (c) Weili, Z; Carreira, E. M. Chem.;Eur.
J. 2006, 12, 7254.
(5) Hayashi, Y.; Yamaguchi, S; Cha, W. Y.; Kim, D.; Shinokubo, H.
Org. Lett. 2011, 13, 2992.
(6) (a) Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma,
H.; Kita, Y. J. Org. Chem. 1998, 63, 7698. (b) Churruca, F.; SanMartin,
R.; Carril, M.; Urtiaga, M. K.; Solans, X.; Tellitu, I.; Domınguez, E.
´
J. Org. Chem. 2005, 70, 3178.
(7) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482. (b) Lloyd, M. T.; Mayer, A. C.; Subramanian,
S.; Mourey, D. A.; Herman, D. J.; Bapat, A. V.; Anthony, J. E.;
Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144. (c) Winzenberg,
K. N.; Kemppinen, P.; Fanchini, G.; Bown, M.; Collis, G. E.; Forsyth,
C. M.; Hegedus, K.; Singh, T. B.; Watkins, S. E. Chem. Mater. 2009, 21,
5701.
a Ar = 2,4,6-trimethylphenyl, PIFA = [Bis(trifluoroacetoxy)iodo]-
benzene.
Org. Lett., Vol. 14, No. 3, 2012
867