Communication
Woo, S.-H. Lee, Y.-D. Jhang, J.-K. Son, J. Nat. Prod. 2002, 65, 1707–1708;
c) T. Nakata, Chem. Rev. 2005, 105, 4314–4347; d) E. J. Kang, E. Lee, Chem.
Rev. 2005, 105, 4348–4378; e) J. E. Aho, P. M. Pinko, T. K. Rissa, Chem. Rev.
2005, 105, 4406–4440; f) S. D. Roughley, A. M. Jordan, J. Med. Chem.
2011, 54, 3451–3479; g) F. Xu, M. J. Zacuto, Y. Kohmura, J. Rosen, A. Gibb,
M. Alam, J. Scott, D. Tschaen, Org. Lett. 2014, 16, 5422–5425.
[2] For selected reviews, see: a) T. L. B. Boivin, Tetrahedron 1987, 43, 3309–
3362; b) L. E. Titze, G. Kettschau, Top. Curr. Chem. 1997, 189, 1–120; c)
P. A. Clarke, S. Santos, Eur. J. Org. Chem. 2006, 2045–2053; d) I. Larrosa,
P. Romea, F. Urpí, Tetrahedron 2008, 64, 2683–2723; e) N. M. Nasir, K.
Ermanis, P. A. Clarke, Org. Biomol. Chem. 2014, 12, 3323–3335; f) M. A.
Perry, S. D. Rychnovsky, N. Sizemore, Top. Heterocycl. Chem. 2014, 35, 43–
95.
reviews, see: h) F. M. Perna, A. Salomone, V. Capriati, Oxygen-Bearing
Lithium Compounds in Modern Synthesis, in: Lithium Compounds in Or-
ganic Synthesis – From Fundamentals to Applications (Eds.: R. Luisi, V.
Capriati), Wiley-VCH, Weinheim, Germany, 2014, p. 153–189; i) F. M.
Perna, A. Salomone, V. Capriati, Recent Developments in the Lithiation
Reactions of Oxygen Heterocycles, in: Advances in Heterocyclic Chemistry
(Eds.: E. F. V. Scriven, C. A. Ramsden), Elsevier/Academic Press, Cambridge,
MA, 2016, vol. 118, p. 91–127.
[13] R. B. Bates, L. M. Kroposki, D. E. Potter, J. Org. Chem. 1972, 37, 560–562.
[14] P. Stanetty, M. D. Mihovilovic, J. Org. Chem. 1997, 62, 1514–1515.
[15] R. L. Letsinger, D. F. Pollart, J. Am. Chem. Soc. 1956, 78, 6079–6085.
[16] J. Langer, M. Köhler, R. Fischer, F. Dündar, H. Görls, M. Westerhausen,
Organometallics 2012, 31, 6172–6182.
[3] M. G. Núñez, P. García, R. F. Moro, D. Díez, Tetrahedron 2010, 66, 2089–
2109.
[17] A. R. Kennedy, J. Klett, R. E. Mulvey, D. S. Wright, Science 2009, 326, 706–
708.
[18] S. V. Ley, B. Lygo, A. Wonnacott, Tetrahedron Lett. 1985, 26, 535–538.
[19] T. Cohen, M.-T. Lin, J. Am. Chem. Soc. 1984, 106, 1130–1131.
[20] Previous examples of the in situ preparation of PhSeNa by reduction of
diphenyl diselenide employed NaBH4 in DMF at 110–120 °C or Na in
THF/hexamethylphosphoric triamide (HMPA) at reflux; see: a) R. N. Scar-
borough Jr., A. B. Smith III, Tetrahedron Lett. 1977, 18, 4361–4364; b) D.
Liotta, H. Santiesteban, Tetrahedron Lett. 1977, 18, 4369–4372.
[21] F. M. Perna, A. Salomone, M. Dammacco, S. Florio, V. Capriati, Chem. Eur.
J. 2011, 17, 8216–8225.
[4] R. Guo, J. Huang, H. Huang, X. Zhao, Org. Lett. 2016, 18, 505–507.
[5] a) A. Temperini, A. Barattucci, P. M. Bonaccorsi, O. Rosati, L. Minuti, J. Org.
Chem. 2015, 80, 8102–8112; b) L. Minuti, A. Barattucci, P. M. Bonaccorsi,
M. L. Di Gioia, A. Leggio, C. Siciliano, A. Temperini, Org. Lett. 2013, 15,
3906–3909.
[6] A. Salomone, F. M. Perna, F. C. Sassone, A. Falcicchio, J. Bezenšek, J. Svete,
B. Stanovnik, S. Florio, V. Capriati, J. Org. Chem. 2013, 78, 11059–11065.
[7] J. Jin, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2015, 54, 1565–1569;
Angew. Chem. 2015, 127, 1585–1589.
[22] a) D. B. Collum, Acc. Chem. Res. 1992, 25, 448–454; b) B. L. Lucht, D. B.
Collum, J. Am. Chem. Soc. 1995, 117, 9863–9874; c) B. L. Lucht, M. P.
Bernstein, J. F. Remenar, D. B. Collum, J. Am. Chem. Soc. 1996, 118,
10707–10718; d) D. B. Collum, D. Hoffmann, J. Am. Chem. Soc. 1998, 120,
5810–5811.
[23] a) H. J. Reich, W. S. Goldenberg, A. W. Sanders, K. L. Jantzi, C. C.
Tzschucke, J. Am. Chem. Soc. 2003, 125, 3509–3521; b) H. J. Reich, W. S.
Goldenberg, A. W. Sanders, ARKIVOC 2004, xiii, 97–129.
[8] a) M. Wan, Z. Meng, H. Lou, L. Liu, Angew. Chem. Int. Ed. 2014, 53, 13845–
13849; Angew. Chem. 2014, 126, 14065–14069; b) Z. Meng, S. Sun, H.
Yuan, H. Lou, L. Liu, Angew. Chem. Int. Ed. 2014, 53, 543–547; Angew.
Chem. 2014, 126, 553–557; c) W. Chen, Z. Xie, H. Zheng, H. Lou, L. Liu,
Org. Lett. 2014, 16, 5988–5991; d) F. Li, Z. Meng, J. Hua, W. Li, H. Lou, L.
Liu, Org. Biomol. Chem. 2015, 13, 5710–5715.
[9] D. P. Affron, J. A. Bull, Eur. J. Org. Chem. 2016, 136–149.
[10] a) G. Köbrich, A. Baumann, Angew. Chem. Int. Ed. Engl. 1973, 12, 856–
858; Angew. Chem. 1973, 85, 916–918; b) A. Maercker, Angew. Chem. Int.
Ed. Engl. 1987, 26, 972–989; Angew. Chem. 1987, 99, 1002–1019.
[11] For reviews on lithium carbenoids, see: a) G. Boche, J. C. W. Lohrenz,
Chem. Rev. 2001, 101, 697–756; b) V. Capriati, S. Florio, Chem. Eur. J.
2010, 16, 4152–4162, and references cited therein; c) V. Capriati, Modern
Lithium Carbenoid Chemistry, in: Contemporary Carbene Chemistry (Eds.:
R. A. Moss, M. P. Doyle), Wiley, Hoboken, NJ, 2013, p. 327–362.
[12] For α-lithiated aryloxiranes, see: a) V. Capriati, S. Florio, A. Salomone, Top.
Stereochem. 2010, 26, 135–164; for lithiated oxetanes, see: b) D. I. Coppi,
A. Salomone, F. M. Perna, V. Capriati, Chem. Commun. 2011, 47, 9918–
9920; c) D. I. Coppi, A. Salomone, F. M. Perna, V. Capriati, Angew. Chem.
Int. Ed. 2012, 51, 7532–7536; Angew. Chem. 2012, 124, 7650–7654; d)
J. V. Geden, B. O. Beasley, G. J. Clarkson, M. Shipman, J. Org. Chem. 2013,
78, 12243–12250; e) K. F. Morgan, I. A. Hollingsworth, J. A. Bull, Chem.
Commun. 2014, 50, 5203–5205; for lithiated aryltetrahydrofurans, see: f)
R. Rosmara, V. Mallardo, F. M. Perna, A. Salomone, V. Capriati, Chem. Com-
mun. 2013, 49, 10160–10162; g) F. C. Sassone, F. M. Perna, A. Salomone,
S. Florio, V. Capriati, Chem. Commun. 2015, 51, 9459–9462; for recent
[24] TMEDA was also shown to be necessary to preserve the chemical integ-
rity of α-lithiated styrene oxide once generated in THF and to mitigate
its carbene-like reactivity, see: a) V. Capriati, S. Florio, R. Luisi, A. Salom-
one, Org. Lett. 2002, 4, 2445–2448; b) V. Capriati, S. Florio, F. M. Perna, A.
Salomone, A. Abbotto, M. Amedjkouh, S. O. Nilsson Lill, Chem. Eur. J.
2009, 15, 7958–7979.
[25] Solution and solid structure investigation of 6-Li are underway and re-
sults will be reported in due course.
[26] E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551–
5553.
[27] Activation free energy for the enantiomerization (ΔG≠enant, kcal mol–1
)
was calculated by application of the Eyring equation, in which T is the
absolute temperature and kenant is the rate constant [s–1] (kenant = krac
2): ΔG≠
= 4.574 T [10.318 + log10(T kenant)]: H. Eyring, Chem. Rev.
/
enant
1935, 17, 65–77.
Received: March 23, 2016
Published Online: ■
Eur. J. Org. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim