426
S. B. Ravula et al. / Bioorg. Med. Chem. Lett. 22 (2012) 421–426
ties for this and other representatives from the series in EEG/EMG
models.
References and Notes
1. (a) Ohayon, M. M.; Lemoine, P. L’Encephale 2004, 30, 135; (b) Zammit, G. K.;
Weiner, J.; Damato, N.; Sillup, G. P.; McMillan, C. A. Sleep 1999, 22, S379.
2. (a) Kubo, N.; Shirakawa, O.; Kuno, T.; Tanaka, C. Jpn. J. Pharmacol. 1987, 43, 277;
(b) Meolie, A. L.; Rosen, C.; Kristo, D.; Kohrman, M.; Gooneratne, N.; Aguillard,
R. N.; Fayle, R.; Troell, R.; Townsend, D.; Claman, D.; Hoban, T.; Mahowald, M.
Clin. Sleep Med. 2005, 1, 173.
3. Coon, T.; Moree, W. J.; Li, B.-F.; Yu, J.; Zamani-Kord, S.; Malany, S.; Santos, M. A.;
Hernandez, L. M.; Petroski, R. E.; Sun, A.; Wen, J.; Sullivan, S.; Haelewyn, J.;
Hedrick, M.; Hoare, S. J.; Bradbury, M. J.; Crowe, P. D.; Beaton, G. Bioorg. Med.
Chem. Lett. 2009, 19, 4380. and references cited therein.
4. Lavarador-Erb, K.; Ravula, S. B.; Yu, J.; Zamani-Kord, S.; Moree, W. J.; Petroski, R.
E.; Wen, J.; Malany, S.; Hoare, S. R. J.; Madan, A.; Crowe, P. D.; Beaton, G. Bioorg.
Med. Chem. Lett. 2010, 20, 2916–2919. and references cited there in.
5. For a review see Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. Methods
and Principles in Medicinal Chemistry (2008), 38 (Antitargets: Prediction and
Prevention of Drug Side Effects), pp. 423–455.
6. Iemura, R.; Ohtaka, H. Chem. Pharm. Bull. 1989, 37(4), 967.
7. Moree, W. J.; Li, B.-F.; Jovic, F.; Coon, T.; Yu, Y.; Tucci, F.; Marinkovic, D.; Gross,
R. S.; Malany, S.; Bradbury, M. J.; Hernandez, L. M.; O’Brien, L.; Wen, J.; Wang,
H.; Hoare, S. R. J.; Petroski, R. E.; Sacaan, A.; Madan, A.; Crowe, P. D.; Beaton, G. J.
Med. Chem. 2009, 52, 5307.
Table 5 demonstrates the progression of leads in this study
compared to our previous work.3,4 Our first lead compound 11,
exhibited excellent CNS exposure and efficacy in an EEG/EMG
model of sleep.3 However, this analog was a potent hERG channel
blocker precluding further development. Optimization of the 4-
aminopiperidine for the hERG liability was possible by removal
of the basic amine and replacement with the pyrazole resulting
in compound 1.3 However, the properties of this molecule were
sub-optimal including poor metabolic stability and solubility.
Changing the orientation of the basic amine was a key factor in
improving H1 affinity, selectivity for hERG channel and metabolic
stability.4 Strategies to reduce pKa and/or logP in this series pro-
vided minimal improvements to hERG selectivity. In the case of
secondary amines identified during this study as exemplified by
10g, reductions in these parameters resulted in an improvement
in CNS exposure. (Table 5).
8. Moree, W. J.; Jovic, F.; Coon, T.; Yu, J.; Li, B.-F.; Tucci, F.; Malany, S.; Bradbury, M.
J.; Hernandez, L. M.; O’Brien, Z.; Wen, J.; Wang, H.; Hoare, S. R.; Petroski, R. E.;
Sacaan, A.; Madan, A.; Crowe, P. D.; Beaton, G. Bioorg. Med. Chem. Lett. 2010, 20,
2316.
9. Madan, A.; O’Brien, Z.; Wen, J.; O’Brien, C.; Farber, R. H.; Beaton, G.; Crowe, P.
D.; Oosterhuis, B.; Garner, R. C.; Lappin, G.; Bozigian, H. P. Br. J. Clin. Pharmacol.
2009, 67, 288.
In summary, our SAR studies around 2 resulted in the identifi-
cation of several compounds with improved selectivity for H1
receptor over a selection of anti-targets including CYP2D6, hERG
channel and the M1 receptor. Best overall profiles were obtained
for a selection of benzimidazole morpholines and thiomorpholines
which demonstrated reasonable predicted metabolic stability in
addition to in vitro selectivity. A reduction in pKa for these
compounds was presumed to be responsible for the increased
CNS exposure relative to the initial starting point. The excellent
CNS exposure demonstrated for morpholine analogs 9a and 9b in
cassette PK studies and thiomorpholine 10g from oral dosing affor-
ded a series of candidates for further in vivo evaluation in EEG/
EMG models.
10. For metabolic ID study, test compounds at 50 lM concentration were
incubated in Human Liver Microsomes at 0.5 mg/mL protein for 120 min
with shaking at 37 °C then checked by LCMS and methods were published as
Supplementary data in: Li, B.-F.; Moree, W. J.; Yu, J.; Coon, T.; Zamani-Kord, S.;
Malany, S.; Jalali, Kayvon.; Wen, J.; Wang, H.; Yang, C.; Hoare, S. J.; Petroski, R.
E.; Madan, A.; Crowe, P. D.; Beaton, G. Bioorg. Med. Chem. Lett. 2010, 20, 2629.
11. Calculated using ACD Labs Software Suite.
12. pKa and logP values were measured using GLPKa instrumentation from
pION Inc. Values were measured for 9c: pKa 7.4; logP 3.4 (calculated pKa
8.2; logP 4.8) and a representative thiomorpholine [R1 3,4-dimethylphenyl]
with S stereochemistry: 1-(3,4-dimethyl-benzyl)-2-morpholin-2-yl-1H-benzoi
midazole]: pKa 7.5; logP 3.3 (calculated pKa 8.3; logP 4.9).
Acknowledgments
The authors wish to thank John Harman and Chris DeVore for
analytical support and Dr. John Saunders, Dr. Paul Conlon and Dr.
Haig Bozigian for program support.