ACS Medicinal Chemistry Letters
Letter
a
(4) Lou, D. Y.; Dominguez, I.; Toselli, P.; Landesman-Bollag, E.;
O’Brien, C.; Seldin, D. C. The alpha catalytic subunit of protein kinase
CK2 is required for mouse embryonic development. Mol. Cell. Biol.
2008, 28, 131−139.
Scheme 2
(5) Buchou, T.; Vernet, M.; Blond, O.; Jensen, H. H.; Pointu, H.;
et al. Disruption of the regulatory beta subunit of protein kinase CK2
in mice leads to a cell-autonomous defect and early embryonic
lethality. Mol. Cell. Biol. 2003, 23, 908−915.
(6) Ruzzene, M.; Pinna, L. A. Addiction to protein kinase CK2: A
common denominator of diverse cancer cells? Biochim. Biophys. Acta
2010, 1804, 499−504.
(7) Di Maira, G.; Brustolon, F.; Pinna, L. A.; Ruzzene, M.
Dephosphorylation and inactivation of Akt/PKB is counteracted by
protein kinase CK2 in HEK 293T cells. Cell. Mol. Life Sci. 2009, 66,
3363−3373.
(8) Dominguez, I.; Sonenshein, G. E.; Seldin, D. C. CK2 and its role
in Wnt and NF-kappa B signaling: Linking development and cancer.
Cell. Mol. Life Sci. 2009, 66, 1850−1857.
(9) Landesman-Bollag, E.; Romieu-Mourez, R.; Song, D. H.;
Sonenshein, G. E.; Cardiff, R. D.; Seldin, D. C. Protein kinase CK2
in mammary gland tumorigenesis. Oncogene 2001, 20, 3247−3257.
(10) Slaton, J. W.; Unger, G. M.; Sloper, D. T.; Davis, A. T.; Ahmed,
K. Induction of apoptosis by antisense CK2 in human prostate cancer
xenograft model. Mol. Cancer Res. 2004, 2, 712−721.
(11) Duncan, J. S.; Litchfield, D. W. Too much of a good thing: the
role of protein kinase CK2 in tumorigenesis and prospects for
therapeutic inhibition of CK2. Biochim. Biophys. Acta 2007, 1784,
33−47.
(12) Battistutta, R. Structural basis of protein kinase CK2 inhibition.
Cell. Mol. Life Sci. 2009, 66, 1868−1889.
a
Reagents and conditions: (a) TsCl, Bu4NHSO4, PhMe, 50% aq
NaOH; (b) Hg(OAc)2, HOAc, HClO4; (c) BH3, H2O; (d) Pd(PPh3)4,
Na2CO3, 1,4-dioxane, 100 °C, 3 h; (e) H2, Pd/C, DMF/MeOH;
(f) Ac2O, pyridine, 25 °C; (g) Cs2CO3, MeOH, THF; (h) [(3-
bromoethyl)oxy](1,1-dimethylethyl) dimethylsilane, K2CO3, DMF,
100 °C, microwave; (i) HCl (4.0 M in 1,4-dioxane), 25 °C; (j) [(3-
bromopropyl)oxy](1,1-dimethylethyl)dimethylsilane, K2CO3, DMF,
100 °C, microwave; (k) methyl acrylate, DBU (1,8-
diazabicyclo[5.4.0]undec-7-ene), MeCN, 25 °C; (l) LiOH, THF,
MeOH, H2O, 25 °C.
(13) Pierre, F.; Chua, P. C.; O’Brien, S. E.; Siddiqui-Jain, A.;
Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M. K.;
Stefan, E.; Vialettes, A.; Whitten, J. P.; Chen, T. K.; Darjania, L.;
Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.;
Proffitt, C.; Streiner, N.; Trent, K.; Rice, W. G.; Ryckman, D. M.
Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]-
naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage
inhibitor of protein kinase CK2 for the treatment of cancer. J. Med.
Chem. 2011, 54, 635−54.
but had a deleterious effect on cellular potency. Kinase selec-
tivity profiling has revealed 3a to be highly selective and has
identified structural features that further reduce off-target
effects. Exploitation of the crystallographically determined bind-
ing mode of 5f for enhancement of primary target potency
and kinase selectivity will be described in a subsequent
communication.
(14) See Supporting Information.
(15) Bembenek, S. D.; Tounge, B. A.; Reynolds, C. H. Ligand
efficiency and fragment-based drug discovery. Drug Discovery Today
2009, 14, 278−283. LE (ligand efficiency) = −log(CK2 IC50)/
number of heavy atoms.
(16) Nie, Z.; Perretta, C.; Erickson, P.; Margosiak, S.; Almassy, R.;
Lu, J.; Averill, A.; Yager, K. M.; Chu, S. Structure-based design,
synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as
potent inhibitors of protein kinase CK2. Bioorg. Med. Chem. Lett. 2007,
17, 4191−4195.
ASSOCIATED CONTENT
■
S
* Supporting Information
Representative experimental procedures for synthesis of
analogues, biochemical and cellular assays, and X-ray structure
determination. This material is available free of charge via the
(17) The PDB deposition code for the cocrystal structure is 3U4U.
(18) Williamson, D. S.; Parratt, M. J.; Bower, J. F.; Moore, J. D.;
Richardson, C. M.; Dokurno, P.; Cansfield, A. D.; Francis, G. L.;
Hebdon, R. J.; Howes, R.; Jackson, P. S.; Lockie, A. M.; Murray, J. B.;
Nunns, C. L.; Powles, J.; Robertson, A.; Surgenor, A. E.; Torrance, C.
J. Structure-guided design of pyrazolo[1,5-a]pyrimidines as inhibitors
of human cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett. 2005, 15,
863−867.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(19) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.;
Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.;
Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.;
Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.;
Wodicka, L. M.; Zarrinkar, P. P. A quantitative analysis of kinase
inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127−132.
(20) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. New diphosphine
ligands based on heterocyclic aromatics inducing very high
regioselectivity in rhodium-catalyzed hydroformylation: effect of the
bite angle. Organometallics 1995, 14, 3081−3089.
REFERENCES
■
(1) Pinna, L. A. Protein kinase CK2: a challenge to canons. J. Cell Sci.
2002, 115, 3873−3878.
(2) Allende, J. E.; Allende, C. C. Protein kinases 4. Protein kinase
CK2: an enzyme with multiple substrates and a puzzling regulation.
FASEB J. 1995, 9, 313−323.
(3) Ji, H.; Wang, J.; Nika, H.; Hawke, D.; Keezer, S.; Ge, Q.; Fang, B.;
Fang, X.; Litchfield, D. W.; Aldape, K. EGF-induced ERK activation
promotes CK2-mediated disassociation of alpha-catenin from beta-
catenin and transactivation of beta-catenin. Mol. Cell 2009, 36,
547−559.
283
dx.doi.org/10.1021/ml200257n | ACS Med. Chem. Lett. 2012, 3, 278−283