.
Angewandte
Communications
Chemistry (Ed.: B. Pignataro), Wiley-VCH, Weinheim, 2010,
chap. 11.
[5] C. D. Simpson, J. D. Brand, A. J. Berresheim, L. Przybilla,
[6] a) X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rꢂder, K.
Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M.
Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mꢀllen, R.
Bendikov, Angew. Chem. 2010, 122, 4104 – 4107; Angew. Chem.
Int. Ed. 2010, 49, 4012 – 4015.
Figure 5. Electronic properties of tetrabenzoheptaphene 12: a) absorption
(solid line) and emission (dashed line) spectra in dichloromethane;
b) cyclic voltammogram in dichloromethane (1 mm).
The absorption spectra of tetrabenzoheptaphene 12 in
DCM solution showed a structured band with two maxima at
317 nm and 400 nm and shoulders at 328 nm, 382 nm, and
430 nm (Figure 5). Under excitation at the 400 nm maximum,
this compound exhibited luminescence at 548 nm with a
quantum yield of 0.18. Cyclic voltammetry of compound 12
showed two reversible oxidation waves at 1188 mV and
1435 mV, and one reduction wave at À1477 mV.[15] From
this data, a HOMO energy value of À5.53 eV and a HOMO–
LUMO gap of 2.66 eV can be estimated. Bearing in mind that
this compound is stable in solution to ambient air and
sunlight, these electronic properties introduce tetrabenzo-
heptaphene 12 as a promising molecule for organic electron-
ics.
In conclusion, we have shown that a sequence of two
different aryne cycloadditions based on a masked bisaryne
can be successfully used to obtain cata-condensed nano-
graphenes with exotic molecular geometries such as clover-
and arch-like structures. In particular, the largest cata-
condensed PAH isolated to date with 102 sp2 carbon atoms,
coined as a [16]cloverphene derivative, has been introduced
in this paper. Work is in progress to explore the limits of this
approach and the applications of these nanosized molecules.
[9] C. Tçnshoff, H. F. Bettinger, Angew. Chem. 2010, 122, 4219 –
4222; Angew. Chem. Int. Ed. 2010, 49, 4125 – 4128.
[10] a) I. Kaur, M. Jazdzyk, N. N. Stein, P. Prusevich, G. P. Miller, J.
see: S. S. Zade, M. Bendikov, Angew. Chem. 2010, 122, 4104 –
4107; Angew. Chem. Int. Ed. 2010, 49, 4012 – 4015; c) B.
Purushothaman, M. Bruzek, S. R. Parkin, A.-F. Miller, J. E.
[12] D. PeÇa, S. Escudero, D. Pꢃrez, E. Guitiꢄn, L. Castedo, Angew.
Chem. 1998, 110, 2804; Angew. Chem. Int. Ed. 1998, 37, 2659.
[13] a) D. PeÇa, A. Cobas, D. Pꢃrez, E. Guitiꢄn, L. Castedo, Org. Lett.
2000, 2, 1629; b) C. Romero, D. PeÇa, D. Pꢃrez, E. Guitiꢄn,
Guitiꢄn, Chem. Rec. 2007, 7, 326 – 333; d) C. Romero, D. PeÇa,
[15] See the Supporting Information for details.
Received: July 14, 2011
Published online: November 9, 2011
[16] I. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C.
[17] I. I. Schuster, L. Craciun, D. M. Ho, R. A. Pascal, Jr., Tetrahe-
Keywords: arynes · cycloadditions · hydrocarbons ·
nanographenes · oligoacenes
.
[18] H. M. Duong, M. Bendikov, D. Steiger, Q. Zhang, G. Sonmez, J.
[19] For some other examples on the use of bisarynes in organic
synthesis, see: a) H. Hart, C. Lai, G. Nwokogu, S. Shamouilian,
c) P. R. Ashton, U. Girreser, D. Giuffrida, F. H. Kohnke, J. P.
Mathias, F. M. Raymo, A. M. Z. Slawin, J. F. Stoddart, D. J.
2745 – 2757; f) J. Lu, D. M. Ho, N. J. Vogelaar, C. M. Kraml,
g) Y.-L. Chen, J.-Q. Sun, X. Wei, W.-W. Wong, A. W. M. Lee, J.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
[3] a) E. Clar, Polycyclic Hydrocarbons, Vol. I/II, Academic Press,
New York, 1964; b) R. G. Harvey, Polycyclic Aromatic Hydro-
carbons, Wiley-VCH, New York, 1997; c) J. C. Fetzer, Large
(C >= 24) Polycyclic Aromatic Hydrocarbons: Chemistry and
Analysis, Wiley-VCH, New York, 2000.
phenes through Organic Synthesis”: D. PeÇa in Ideas in
Chemistry and Molecular Sciences: Advances in Synthetic
176
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2012, 51, 173 –177