(k) K. Zheng, C. Yin, X. Liu, L. Lin and X. Feng, Angew. Chem.,
Int. Ed., 2011, 50, 2573; (l) Q. Guo, M. Bhanushali and
C.-G. Zhao, Angew. Chem., Int. Ed., 2010, 49, 9460;
(m) S. M. Hande, M. Nakajima, H. Kamisaki, C. Tsukano and
Y. Takemoto, Org. Lett., 2011, 13, 1828; (n) F. Pesciaioli, P. Righi,
A. Mazzanti, G. Bartoli and G. Bencivenni, Chem.–Eur. J., 2011,
17, 2842; (o) X. Li, Y.-M. Li, F.-Z. Peng, S.-T. Wu, Z.-Q. Li,
Z.-W. Sun, H.-B. Zhang and Z.-H. Shao, Org. Lett., 2011,
13, 6160; (p) A. Singh and G. P. Roth, Org. Lett., 2011,
13, 2118; (q) Y.-M. Li, X. Li, F.-Z. Peng, Z.-Q. Li, S.-T. Wu,
Z.-W. Sun, H.-B. Zhang and Z.-H. Shao, Org. Lett., 2011,
13, 6200; (r) Y.-L. Liu, B.-L. Wang, J.-J. Cao, L. Chen,
Y.-X. Zhang, C. Wang and J. Zhou, J. Am. Chem. Soc., 2010,
132, 15176; (s) N. V. Hanhan, A. H. Sahin, T. W. Chang,
J. C. Fettinger and A. K. Franz, Angew. Chem., Int. Ed., 2010,
49, 744.
4 Oxindole derivatives as electrophiles in organocatalysis:
(a) Y. Cao, X. Jiang, L. Liu, F. Shen, F. Zhang and R. Wang,
Angew. Chem., Int. Ed., 2011, 50, 9124; (b) X.-C. Zhang,
S.-H. Cao, Y. Wei and M. Shi, Org. Lett., 2011, 13, 1142;
(c) X.-C. Zhang, S.-H. Cao, Y. Wei and M. Shi, Chem. Commun.,
2011, 47, 1548; (d) H.-P. Deng, Y. Wei and M. Shi, Org. Lett.,
2011, 13, 3348; (e) S.-W. Duan, H.-H. Lu, F.-G. Zhang, J. Xuan,
J.-R. Chen and W.-J. Xiao, Synthesis, 2011, 1847; (f) W.-B. Chen,
Z.-J. Wu, Q.-L. Pei, L.-F. Cun, X.-M. Zhang and W.-C. Yuan,
Org. Lett., 2010, 12, 3132; (g) K. Jiang, Z.-J. Jia, S. Chen, L. Wu
and Y.-C. Chen, Chem.–Eur. J., 2010, 16, 2852; (h) F. Pesciaioli,
P. Righi, A. Mazzanti, G. Bartoli and G. Bencivenni, Chem.–Eur. J.,
2011, 17, 2842; (i) Y.-B. Lan, H. Zhao, Z.-M. Liu, G.-G. Liu,
J.-C. Tao and X.-W. Wang, Org. Lett., 2011, 13, 4866;
(j) C. Palumbo, G. Mazzeo, A. Mazziotta, A. Gambacorta,
M. A. Loreto, A. Migliorini, S. Superchi, D. Tofani and
T. Gasperi, Org. Lett., 2011, 13, 6248.
Scheme 1 Transformation of 3,30-disubstituted oxindole 3a to spiro-
oxindole 7.
co-catalyst under mild reaction conditions. Furthermore,
more atom-economical three-component processes through a
domino Knoevenagel/Michael sequence have been realized
while achieving similar or better efficiencies. The products
bearing dense functionalities can be conveniently elaborated
to generate structurally diverse molecular architectures for
biological studies; further efforts along this line are being
pursued in this laboratory.
We gratefully acknowledge the financial supports from the
111 Project (Grant B07023) and East China University of
Science & Technology.
Notes and references
1 For reviews of oxindole alkaloids, see: (a) J. J. Badillo,
N. V. Hanhan and A. K. Franz, Curr. Opin. Drug Discovery
Dev., 2010, 13, 758; (b) S. Peddibhotla, Curr. Bioact. Compd.,
2009, 5, 20; (c) C. V. Galliford and K. A. Scheidt, Angew. Chem.,
Int. Ed., 2007, 46, 8748; (d) C. Marti and E. M. Carreira, Eur. J.
Org. Chem., 2003, 2209; (e) R. M. Williams and R. J. Cox, Acc.
Chem. Res., 2003, 36, 127.
2 For recent reviews of synthetic method development, see:
(a) B. M. Trost and C. Jaing, Synthesis, 2006, 369; (b) F. Zhou,
Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381;
(c) J. S. Russel, Top. Heterocycl. Chem., 2010, 26, 397;
(d) J. J. Badillo, N. V. Hanhan and A. K. Franz, Curr. Opin. Drug
Discovery Dev., 2010, 13, 758; (e) A. Millemaggi and R. J. K.
Taylor, Eur. J. Org. Chem., 2010, 4527.
3 For recent selected examples of synthesis of 3,30-disubstituted
oxindoles, see: (a) T. Zhang, L. Cheng, S. Hameed, L. Liu,
D. Wang and Y.-J. Chen, Chem. Commun., 2011, 47, 6644;
(b) X.-L. Liu, Z.-J. Wu, X.-L. Du, X.-M. Zhang and
W.-C. Yuan, J. Org. Chem., 2011, 76, 4008; (c) M. H. Freund
and S. B. Tsogoeva, Synlett, 2011, 503; (d) S.-W. Duan, J. An,
J.-R. Chen and W.-J. Xiao, Org. Lett., 2011, 13, 2290; (e) Z. Liu,
P. Gu, M. Shi, P. McDowell and G. Li, Org. Lett., 2011, 13, 2314;
(f) Z. Zhang, W. Zheng and J. C. Antilla, Angew. Chem., Int. Ed.,
2011, 50, 1135; (g) X. Li, S.-Z. Luo and J.-P. Cheng, Chem.–Eur.
J., 2010, 16, 14290; (h) F. Zhong, G.-Y. Chen and Y.-X. Lu, Org.
Lett., 2011, 13, 82; (i) M. Ding, F. Zhou, C.-H. Liu, Y.-L. Wang,
X.-L. Zhao and J. Zhou, Chem. Sci., 2011, 2, 2035; (j) B. Tan,
N. R. Candeias and C. F. Barbas, III, Nat. Chem., 2011, 3, 473;
5 For a recent review, see: A. Cordova, Catalytic Asymmetric Conjugate
´
Addition Reactions, Wiley-VCH, Weinheim, Germany, 2010.
6 For reviews of primary amine catalysis, see: (a) Y.-C. Chen,
Synlett, 2008, 1919; (b) F. Peng and Z. Shao, J. Mol. Catal. A:
Chem., 2008, 285, 1; (c) L.-W. Xu, J. Luo and Y.-X. Lu, Chem.
Commun., 2009, 1807.
7 The results of primary amine catalyzed Michael addition of
ketones from our group: (a) J. Wang, H. Li, L. Zu and
W. Wang, Adv. Synth. Catal., 2006, 348, 425; (b) F. Xue,
S.-L. Zhang, W.-H. Duan and W. Wang, Adv. Synth. Catal.,
2008, 350, 2194; (c) K. Mei, M. Jin, S.-L. Zhang, P. Li,
W.-J. Liu, X.-B. Chen, F. Xue, W.-H. Duan and W. Wang, Org.
Lett., 2009, 11, 2864; (d) G. Luo, S. Zhang, W.-H. Duan and
W. Wang, Synthesis, 2009, 1564; (e) F. Xue, L. Liu, S. Zhang,
W.-H. Duan and W. Wang, Chem.–Eur. J., 2010, 16, 7979.
8 For leading references in asymmetric counter ion directed catalysis,
see: (a) N. J. A. Martin and B. List, J. Am. Chem. Soc., 2006,
128, 13368; (b) T. Mandal and C.-G. Zhao, Angew. Chem., Int. Ed.,
2008, 47, 7714; (c) O. Lifchits, C. M. Reisinger and B. List, J. Am.
Chem. Soc., 2010, 132, 10227; (d) G. Bergonzini, S. Vera and
P. Melchiorre, Angew. Chem., Int. Ed., 2010, 49, 9685; (e) C. Liu
and Y. Lu, Org. Lett., 2010, 12, 2278 and ref. 4i.
9 Transition state models are proposed in Fig. S1 in ESIw.
10 CCDC 853177w.
11 K. Higashiyama and H. Otomasu, Chem. Pharm. Bull., 1980,
28, 1540.
c
1694 Chem. Commun., 2012, 48, 1692–1694
This journal is The Royal Society of Chemistry 2012