Organic Letters
Letter
15) in good yields with varying steric constraints next to the
secondary alcohol. The reaction also tolerated the use of an
additional unprotected hydroxyl group to provide spiroketal
(−)-15.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and spectroscopic and analytical data for all
new compounds. This material is available free of charge via the
■
S
Scheme 3. Photoisomerization/Spirocyclization Sequence
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†B.L. and B.D.W. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the Institutes of General
Medical Sciences through grant GM-029028. We also thank Drs.
George Furst and Rakesh Kohli at the University of
Pennsylvannia for help obtaining the high-resolution NMR and
mass spectral data, respectively and the China Scholarship
Council for a scholarship to Bo Li (CSC No. 2012-06200031).
Finally, to explore the mechanism of this protocol (vide
supra), trans-enone 1 (Scheme 4a) was irradiated (355 nm) to
give the expected mixture of olefin isomers (Scheme 4b). This
mixture was then treated with 10 mol % of p-TsOH·H2O and
stirred in the dark. In accordance with our proposal, the cis-
isomer preferentially underwent cyclization, thus enriching the
remaining enone mixture with the trans-isomer.
REFERENCES
■
(1) (a) Yeung, K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237−4313.
(b) Williams, D. E.; Roberge, M.; Van Soest, R.; Andersen, R. J. J. Am.
Chem. Soc. 2003, 125, 5296−5297. (c) Kashman, Y.; Groweiss, A.; Lidor,
R.; Blasberger, D.; Carmely, S. Tetrahedron 1985, 41, 1905−1914.
(2) (a) Seebach, D.; Chow, H. F.; Jackson, R. F. W.; Lawson, K.; Sutter,
M. A.; Thaisrivongs, S.; Zimmermann, J. J. Am. Chem. Soc. 1985, 107,
5292−5293. (b) Zibuck, R.; Liverton, N. J.; Smith, A. B., III. J. Am. Chem.
Soc. 1986, 108, 2451−2453. (c) Furstner, A.; De Souza, D.; Parra-
Rapado, L.; Jensen, J. T. Angew. Chem., Int. Ed. 2003, 42, 5358−5360.
(3) (a) Matsuo, J.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52,
9109−9118. (b) Schetter, B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006,
45, 7506−7525.
Scheme 4. (a) Rationale for Facile Cyclization under
Photochemical Conditions and (b) 1H NMR Monitoring of
the Photoisomerization/Cyclization Sequence
(4) (a) Schwarz, S.; Weber, G.; Palme, H. J.; Wentzke, M.; Reck, G.;
Schick, H. J. Chem. Soc., Perkin Trans. 1 1990, 3, 751−756. (b) Fuerstner,
A.; De Souza, D.; Turet, L.; Fenster, M. D. B.; Parra-Rapado, L.; Wirtz,
C.; Mynott, R.; Lehmann, C. W. Chem.Eur. J. 2007, 13, 115−134.
(c) Williams, B. D.; Smith, A. B., III. Org. Lett. 2013, 15, 4584−4587.
(d) Williams, B. D.; Smith, A. B., III. J. Org. Chem. 2014, 79, 9284−9296.
(5) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A.
H. J. Am. Chem. Soc. 1999, 121, 791−799. (b) Wittig, G.; Geissler, G.
Liebigs Ann. 1953, 44−57. (c) Wadsworth, W. S., Jr. Org. React. 1977, 25,
73−253.
(6) (a) Saito, S.; Shiozawa, M.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc.
1998, 120, 813−814. (b) Christmann, M.; Kalesse, M. Tetrahedron Lett.
2001, 42, 1269−1271.
(7) (a) Nising, C. F.; Braese, S. Chem. Soc. Rev. 2012, 41, 988−999.
(b) Nising, C. F.; Braese, S. Chem. Soc. Rev. 2008, 37, 1218−1228.
(8) (a) Childs, R. F.; Hine, K. E.; Hung, F. A. Can. J. Chem. 1979, 57,
1442−1445. (b) Wilsey, S.; Gonzalez, L.; Robb, M. A.; Houk, K. N. J.
Am. Chem. Soc. 2000, 122, 5866−5876.
(9) Snider, B.; Zhongping, S. J. Am. Chem. Soc. 1992, 114, 1790−1800.
(10) (a) Hsiao, C.; Liao, H.; Sugiono, E.; Atodiresei, I.; Rueping, M.
Chem.Eur. J. 2013, 19, 9775−9779. (b) Sugiono, E.; Rueping, M.
Beilstein J. Org. Chem. 2013, 9, 2457−2462. (c) Liao, H.; Hsiao, C.;
Sugiono, E.; Rueping, M. Chem. Commun. 2013, 49, 7953−7955.
(11) Lathrop, S. P.; Rovis, T. Chem. Sci. 2013, 4, 1668−1673.
(12) (a) Smith, A. B., III; Kim, D. Org. Lett. 2007, 9, 3311−3314.
(b) Wang, X.; Paxton, T. J.; Li, N.; Smith, A. B., III. Org. Lett. 2012, 14,
3998−4001.
In summary, we have developed a mild photochemical
protocol for the cyclization of δ-hydroxy enones to cyclic ketals
or unsaturated spiroketals. The reaction proceeds with high
functional group tolerance, requires only catalytic acid, and
provides cyclic products in moderate to high yields with high
diastereoselectivities. Efforts directed at the expansion of this
work, employing alternative nucleophiles, is currently underway.
C
dx.doi.org/10.1021/ol503116q | Org. Lett. XXXX, XXX, XXX−XXX