10.1002/anie.201916088
Angewandte Chemie International Edition
RESEARCH ARTICLE
Top200%20Pharmacetical%20Products%20by%20US%20Retail%20S
a les%20in%202012_0.pdf.
Experimental Section
[2]
a) K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev. 2017,
117, 14091-14200; b) I. Bolea, A. Gella, M. Unzeta, Journal of Neural
Transmission 2013, 120, 893-902; c) F. T. Zindo, J. Joubert, S. F.
Malan, Future Medicinal Chemistry 2015, 7, 609-629; d) K. C. Nicolaou,
C. K. Hwang, A. L. Smith, S. V. Wendeborn, J. Am. Chem. Soc. 1990,
112, 7416-7418; e) J. A. Porco, F. J. Schoenen, T. J. Stout, J. Clardy, S.
L. Schreiber, J. Am. Chem. Soc. 1990, 112, 7410-7411; f) B. M. Trost,
C. K. Chung, A. B. Pinkerton, Angew. Chem. Int. Ed. 2004, 43, 4327-
4329; g) B. Jiang, M. Xu, Angew. Chem. Int. Ed. 2004, 43, 2543-2546.
a) I.-T. Trotuş, T. Zimmermann, F. Schüth, Chem. Rev. 2014, 114,
1761-1782; b) B. M. Trost, Li, C.-J., Modern Alkyne Chemistry:
Catalytic and Atom-Economic Transformations, Wiley, New York, 2014.
For reviews: a) L. Zani, C. Bolm, Chem. Commun. 2006, 4263-4275; b)
C.-J. Li, Acc. Chem. Res. 2010, 43, 581-590; c) W.-J. Yoo, L. Zhao, C.-
J. Li, Aldrichimica Acta 2011, 44, 43-51; d) V. A. Peshkov, O. P.
Pereshivko, E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790-
3807; e) B. V. Rokade, J. Barker, P. J. Guiry, Chem. Soc. Rev. 2019,
48, 4766-4790.
Preparation of E-enamide 1c: AlMe3 (2.0 M in hexane, 20
mmol) was added dropwise to a solution of Cp2ZrCl2 (10 mmol)
in DCE (15 mL) at 0 °C. After stirring for 1 h, 4-phenyl-1-butyne
(10 mmol) was added at 0 °C. The reaction mixture was stirred
for 24 h at room temperature and then cooled to 0 ºC before I2
(12 mmol) in THF (15 mL) was added. After 5 h, the mixture was
quenched with H2O carefully. The organic layer was extracted
with DCM, washed with Na2S2O3, dried with Na2SO4, and
concentrated in vacuo. The crude product was purified by flash
chromatography to afford vinyl iodide as a single isomer (76%
yield).
A Schlenk tube was charged with pivalamide (20 mmol),
copper iodide (20 mmol), and Cs2CO3 (20 mmol). Vinyl iodide
(10 mmol) and N,N’-dimethylethylenediamine (20 mmol) in THF
were added under argon. The mixture was stirred at 60 ℃ for 12
h. After filtration over Celite, the mixture was diluted with DCM
and washed with water. The organic extract was dried over
Na2SO4 and concentrated in vacuo. The crude product was
purified by flash chromatography to afford E-enamide 1c (92%
yield).
Preparation of Z-enamide 1a’: To a cooled mixture (-78 °C) of
bromomethyltriphenylphosphonium bromide (10.5 mmol) in THF
(80 mL) under N2 was added t-BuOK (10.7 mmol). After 1 h at -
78 °C, a solution of benzylacetone (10 mmol) in 5.0 mL of dry
THF was added dropwise and the mixture was stirred for 1 h.
The reaction mixture was warmed up to room temperature and
poured into 50 mL of pentane while Ph3PO precipitated out of
the solution. After filtration, the solution was concentrated and
the residue was purified by flash chromatography to afford vinyl
bromide as an E and Z mixture (1:1 ratio, 60%). Further
amidation of the vinyl bromide using the procedure described
above afforded a mixture of E-1a and Z-1a’ from which Z-1a’
was separated by column chromatography (30% over two
steps).
Procedure for catalytic hydroalkynylation: In an N2-filled
glovebox, enamide 1a (0.10 mmol, 1.0 equiv), Ir(COD)2BF4 (2.5
mg, 0.0050 mmol), (S)-L7 (2.5 mg, 0.0050 mmol) were weighed
into a one-dram screw-capped vial. Subsequently, DCE (0.30
mL) and alkyne (0.20 mmol, 2.0 equiv) were added via syringes.
The vial was capped with a Teflon-lined screw cap, and the
resulting solution was then removed from the glovebox, placed
in a pre-heated aluminum block at 60 °C for 12 h. The reaction
mixture was concentrated and the residue was purified directly
by column chromatography to afford 38.2 mg of propargyl amide
3a as an oil (99%).
[3]
[4]
[5]
For leading examples: a) T. F. Knöpfel, P. Aschwanden, T. Ichikawa, T.
Watanabe, E. M. Carreira, Angew. Chem. Int. Ed. 2004, 43, 5971-5973;
b) C. M. Wei, J. T. Mague, C. J. Li, Proc. Natl. Acad. Sci. 2004, 101,
5749-5754; c) J. X. Ji, J. Wu, A. S. C. Chan, Proc. Natl. Acad. Sci. 2005,
102, 11196-11200; d) M. Rueping, A. P. Antonchick, C. Brinkmann,
Angew. Chem. Int. Ed. 2007, 46, 6903-6906; e) Z. Sun, S. Yu, Z. Ding,
D. Ma, J. Am. Chem. Soc. 2007, 129, 9300-9301; f) G. Blay, L.
Cardona, E. Climent, J. R. Pedro, Angew. Chem. Int. Ed. 2008, 47,
5593-5596; g) Y. Lu, T. C. Johnstone, B. A. Arndtsen, J. Am. Chem.
Soc. 2009, 131, 11284-11285; h) T. Hashimoto, M. Omote, K. Maruoka,
Angew. Chem. Int. Ed. 2011, 50, 8952-8955; i) W. Fan, S. Ma, Chem.
Commun. 2013, 49, 10175-10177; j) F. S. P. Cardoso, K. A. Abboud, A.
Aponick, J. Am. Chem. Soc. 2013, 135, 14548-14551; k) V. Bisai, A.
Suneja, V. K. Singh, Angew. Chem. Int. Ed. 2014, 53, 10737-10741; l)
W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang, Q.
Yu, W. Yuan, J. Zhang, C. Zhu, S. Ma, Angew. Chem. Int. Ed. 2014, 53,
277-281; m) M. Pappoppula, F. S. P. Cardoso , B. O. Garrett, A.
Aponick, Angew. Chem. Int. Ed. 2015, 54, 15202-15206; n) C. Zhao, D.
Seidel, J. Am. Chem. Soc. 2015, 137, 4650-4653; o) S. Dasgupta, J.
Liu, C. A. Shoffler, G. P. A. Yap, M. P. Watson, Org. Lett. 2016, 18,
6006-6009; p) K. Morisaki, M. Sawa, R. Yonesaki, H. Morimoto, K.
Mashima, T. Ohshima, J. Am. Chem. Soc. 2016, 138, 6194-6203; q) P.
H. Paioti, K. A. Abboud, A. Aponick, J. Am. Chem. Soc. 2016, 138,
2150-2153; r) Z. Ling, S. Singh, F. Xie, L. Wu, W. Zhang, Chem
Commun. 2017, 53, 5364-5367.
[6]
For a one-substrate example with high diastereoselectivity but
moderate enantioselectivity: N. Gommermann, P. Knochel, Chem. Eur.
J. 2006, 12, 4380-4392.
[7]
[8]
a) Y. Nishibayashi, Synthesis 2012, 44, 489-503; b) D.-Y. Zhang, X.-P.
Hu, Tetrahedron Lett. 2015, 56, 283-295.
For leading examples: a) G. Hattori, K. Sakata, H. Matsuzawa, Y.
Tanabe, Y. Miyake, Y. Nishibayashi, J. Am. Chem. Soc. 2010, 132,
10592-10608; b) G. Hattori, H. Matsuzawa, Y. Miyake, Y. Nishibayashi,
Angew. Chem. Int. Ed. 2008, 47, 3781-3783; c) K. Watanabe, Y.
Miyazaki, M. Okubo, B. Zhou, H. Tsuji, M. Kawatsura, Org. Lett. 2018,
20, 5448-5451.
Acknowledgements
[9]
a) H. Mandai, K. Mandai, M. L. Snapper, A. H. Hoveyda, J. Am. Chem.
Soc. 2008, 130, 17961-17969 (high diastereoselectivity was obtained);
b) E. Gómez-Bengoa, J. Jiménez, I. Lapuerta, A. Mielgo, M. Oiarbide, I.
Otazo, I. Velilla, S. Vera, C. Palomo, Chem. Sci. 2012, 3, 2949-2957; c)
T. Kano, T. Yurino, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52,
11509-11512; d) Y. Wang, M. Mo, K. Zhu, C. Zheng, H. Zhang, W.
Wang, Z. Shao, Nat. Commun. 2015, 6, 8544; e) T. Kano, R.
Kobayashi, K. Maruoka, Angew. Chem. Int. Ed. 2015, 54, 8471-8474; f)
I. Lapuerta, S. Vera, M. Oiarbide, C. Palomo, Chem. Eur. J. 2016, 22,
7229-7237; g) Y. Hayashi, T. Yamazaki, G. Kawauchi, I. Sato, Org. Lett.
2018, 20, 2391-2394; h) X. Meng, B. Yang, L. Zhang, G. Pan, X. Zhang,
Z. Shao, Org. Lett. 2019, 21, 1292-1296.
This work was supported by the National Natural Science
Foundation of China (Grant No. 91856107 and No. 21672122)
and 111 Project (B16028). Prof. Nian-Kai Fu at Institute of
Chemistry, CAS is acknowledged for the help of HPLC analysis.
Keywords: propargyl amide • alkynylation • enamide •
asymmetric catalysis • vicinal stereocenters
[1]
a) T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753-819; b)
6
This article is protected by copyright. All rights reserved.