42
X. Shang et al. / Inorganic Chemistry Communications 16 (2012) 37–42
on pyrazole derivative: naked eye “no–yes” detection, J. Photochem. Photobiol.
4. Conclusion
A: Chem. 217 (2011) 29–34.
[20] R. Nishiyabu, P. Anzenbacher Jr., 1, 3-Indane-based chromogenic calixpyrroles
with push–pull chromophores: synthesis and anion sensing, Org. Lett. 8 (2006)
359–362.
[21] Y.H. Wang, H. Lin, J. Shao, Z.S. Cai, H.K. Lin, A phenylhydrazone-based indole re-
ceptor for sensing acetate, Talanta 74 (2008) 1122–1125.
[22] J. Shao, Y.H. Qiao, H. Lin, H.K. Lin, A turn-on fluorescent anion receptor based on N,
N′-di-b-naphthyl-1, 10-phenanthroline-2, 9-diamide, J. Lumin. 128 (2008)
1985–1988.
[23] M.A. Hossain, H. Mihara, A. Ueno, Novel peptides bearing pyrene and coumarin
units with or without b-cyclodextrin in their side chains exhibit intramolecular
fluorescence resonance energy transfer, J. Am. Chem. Soc. 125 (2003)
11178–11179.
[24] J.S. Kim, D.T. Quang, Calixarene-derived fluorescent probes, Chem. Rev. 107
(2007) 3780–3799.
[25] J. Shao, H. Lin, H.K. Lin, Rational design of a colorimetric and ratiometric fluores-
cent chemosensor based on intramolecular charge transfer (ICT), Talanta 77
(2008) 273–277.
In conclusion, a colorimetric and fluorescent anion sensor, which
allows so-called naked-eye detection in a straightforward and inex-
pensive manner, offering qualitative and quantitative information
without using expensive equipment, has been developed. And what
is more attractive is that the sensor is based on photoinduced electron
transfer (PET) fluorescence enhancement (turn-on), which offers the
potential for high sensitivity. In addition, the determination limit of
sensor 1 toward H2PO4− is 1.0×10−6 mol·L−1 which indicates that
this sensor could potentially be useful as a probe for monitoring
H2PO4− levels in physiological and environmental systems. What is
more, the sensor is expected to have many opportunities in detection
of H2PO4− ion in real life owing to the simplicity and sensitivity of the
analysis.
[26] J.R. Lakowicz (Ed.), Principles of Fluorescence Spectroscopy, Plenum Publishers
Corp, New York, 1999.
[27] M. Jesús Seguí, J. Lizondo-Sabater, A. Benito, A new ion-selective electrode for an-
ionic surfactants, Talanta 71 (2007) 333–338.
Acknowledgments
[28] Shin-ichi Kondo, Masanori Nagamine, Satoshi Karasawa, Masaya Ishihara, Masa-
fumi Unno, Yumihiko Yano, Anion recognition by 2,2′-binaphthalene derivatives
bearing urea and thiourea groups at 8- and 8′-positions by UV–vis and fluores-
cence spectroscopies, Tetrahedron 67 (2011) 943–950.
[29] John S. Mendy, Musabbir A. Saeed, Frank R. Fronczek, Douglas R. Powell, Md.
Alamgir Hossain, Anion recognition and sensing by a new macrocyclic dinuclear
copper(II) complex: a selective receptor for iodide, Inorg. Chem. 49 (2010)
7223–7225.
This work was supported by the Nature Science Fund of Henan
Province (2010B150024), Young Teacher Fund of Henan Province
and Doctorial Starting Fund of Xinxiang Medical University.
References
[30] R. Velu, V.T. Ramakrishnan, P. Ramamurthy, Selective fluoride ion recognition by
a thiourea based receptor linked acridinedione functionalized gold nanoparticles,
J. Photoch. Photobiol. A: Chem. 217 (2011) 313–320.
[31] R. Custelcean, L.H. Delmau, B.A. Moyer, J.L. Sessler, W.-S. Cho, D. Gross, G.W. Bates,
S.J. Brooks, M.E. Light, P.A. Gale, Angew. Chem. Int. Ed. 44 (2005) 2537–2542.
[32] J.L. Sessler, D.-G. Cho, M. Stepien, V. Lynch, J. Waluk, Z.S. Yoon, D.J. Kim, Am.
Chem. Soc. 128 (2006) 12640–12641.
[33] X. Bao, Y.H. Zhou, Synthesis and recognition properties of a class of simple color-
imetric anion chemosensors containing OH and CONH groups, Sensor. Actuat. B:
Chem. 147 (2010) 434–441.
[1] C. Caltagirone, P.A. Gale, Anion receptor chemistry: highlights from 2007, Chem.
Soc. Rev. 38 (2009) 520–563.
[2] K. Bowman-James, Alfred Werner revisited: the coordination chemistry of anions,
Acc. Chem. Res. 38 (2005) 671–678.
[3] P.A. Gale, Structural and molecular recognition studies with acyclic anion recep-
tors, Acc. Chem. Res. 39 (2006) 465–475.
[4] C.R. Bondy, S.J. Loeb, Amide based receptors for anions, Coord. Chem. Rev. 240
(2003) 77–99.
[5] P.A. Gale, Anion and ion-pair receptor chemistry: highlights from 2000 and 2001,
Coord. Chem. Rev. 240 (2003) 191–221.
[34] S.-H. Kim, I.-J. Hwang, S.-Y. Gwon, S.M. Burkinshaw, Y.-A. Son, An anion sensor
based on the displacement of 2,6-dichlorophenol-indo-o-cresol sodium salt
from a water-soluble tetrasulfonated calix[4]arene, Dyes Pigments 88 (2011)
84–87.
[35] Z.H. Lin, S.J. Ou, C.Y. Duan, B.G. Zhang, Z.P. Bai, Naked-eye detection of fluoride ion
in water: a remarkably selective easy-to-prepare test paper, Chem. Commun.
(2006) 624–626.
[36] Y.-M. Zhang, Q. Lin, T.-B. Wei, D.-D. Wang, H. Yao, Y.-L. Wang, Simple colorimetric
sensors with high selectivity for acetate and chloride in aqueous solution, Sensor.
Actuat. B: Chem. 137 (2009) 447–455.
[37] M.J. Chmielewski, M. Charon, J. Jurczak, 1,8-diamino-3,6-dichlorocarbazole: a
promising building block for anion receptors, J. Org. Lett. 6 (2004) 3501–3504.
[38] X. Zhang, L. Guo, F.-Y. Wu, Y.-B. Jiang, Development of fluorescent sensing of an-
ions under excited-state intermolecular proton transfer signaling mechanism,
Org. Lett. 5 (2003) 2667–2670.
[39] S.Y. Liu, Y.B. He, J.L. Wu, L.H. Wei, H.J. Qin, L.Z. Meng, L. Hu, Calix[4]arenes contain-
ing thiourea and amide moieties: neutral receptors towards α, ω-dicarboxylate
anions, Org. Biomol. Chem. 2 (2004) 1582–1586.
[40] Y. Kubo, M. Kato, Y. Yoshihiro Misawa, S. Tokita, Tetrahedron Lett. 45 (2004)
3769–3773.
[41] Y. Liu, B.H. Han, H.Y. Zhang, Spectroscopic studies on molecular recognition of
modified cyclodextrins, Curr. Org. Chem. 8 (2004) 35–46.
[42] Y. Liu, C.C. You, H.Y. Zhang, Supramolecular Chemistry, Nankai University Publica-
tion, Tian Jin, 2001.
[6] J.L. Sessler, D.G. Cho, V. Lynch, Diindolylquinoxalines: effective indole-based re-
ceptors for phosphate anion, J. Am. Chem. Soc. 128 (2006) 16518–16519.
[7] P.A. Furman, J.A. Fyfe, M.H. Clair St, K. Weinhold, J.L. Rideout, G.A. Freeman, et al.,
Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the
5'-triphosphate with human immunodeficiency virus reverse transcriptase,
Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 8333–8337.
[8] V. Král, J.L. Sessler, Molecular recognition via base-pairing and phosphate chela-
tion. Ditopic and tritopic sapphyrin-based receptors for the recognition and
transport of nucleotide monophosphates, Tetrahedron 51 (1995) 539–554.
[9] A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, Molecular recognition and fluorescence
sensing of monophosphorylated peptides in aqueous solution by bis (zinc (II)-
dipicolylamine)-based artificial receptors, J. Am. Chem. Soc. 126 (2004)
2454–2463.
[10] P.A. Gale, A phenylhydrazone-based indole receptor for sensing acetate, Chem.
Commun. 30 (2005) 3761–3772.
[11] G.W. Lee, N. Singh, D.O. Jang, Benzimidazole and thiourea conjugated fluorescent
hybrid receptor for selective recognition of PO43−, Tetrahedron Lett. 49 (2008)
1952–1956.
[12] J.L. Jimenez Blanco, P. Bootello, J.M. Benito, C. Ortiz Mellet, J.M. Garcia Fernandez,
Urea-, thiourea-, and guanidine-linked glycooligomers as phosphate binders in
water, J. Org. Chem. 71 (2006) 5136–5143.
[13] D.A. Jose, S. Mishra, A. Ghosh, A. Shrivastav, S.K. Mishra, A. Das, Colorimetric sen-
sor for ATP in aqueous solution, Org. Lett. 9 (2007) 1979–1982.
[14] T. Gunnlaugsson, M. Glynn, G.M. Tocci, P.E. Kruger, F.M. Pfeffer, Anion recognition
and sensing in organic and aqueous media using luminescent and colorimetric
sensors, Coord. Chem. Rev. 250 (2006) 3094–3117.
[43] J. Bourson, J. Pouget, B. Valeur, Ion-responsive fluorescent compounds. 4. Effect of
cation binding on the photophysical properties of a coumarin linked to monoaza-
and diaza-crown ethers, J. Phys. Chem. 97 (1993) 4552–4557.
[44] I.V. Korendovych, M. Cho, P.L. Butler, R.J. Staples, E.V. Rybak-Akimova, Anion
[15] M. Zhang, M.Y. Li, F.Y. Li, Y.F. Cheng, J.P. Zhang, T. Yi, C. Huang, A novel Y-type,
two-photon active fluorophore: synthesis and application in ratiometric fluores-
cent sensor for fluoride anion, Dyes Pigments 76 (2008) 408–414.
[16] D.A. Jose, P. Kar, D. Koley, B. Ganguly, Phenol-and catechol-based ruthenium (II)
polypyridyl complexes as colorimetric sensors for fluoride ions, Inorg. Chem. 46
(2007) 5576–5584.
[17] J. Shao, X. Yu, X. Xu, H. Lin, Z. Cai, H.K. Lin, Colorimetric and fluorescent sensing of
biologically important fluoride in physiological pH condition based on a positive
homotropic allosteric system, Talanta 79 (2009) 547–551.
binding to monotopic and ditopic macrocyclic amides, Org. Lett.
8 (2006)
3171–3174.
[45] M. Bonizzoni, L. Fabbrizzi, A. Taglietti, F. Tiengo, Eur. J. Org. Chem. (2006)
3567–3574.
[46] M. Boiocchi, L. Del Boca, D.E. Gomez, L. Fabbrizzi, M. Licchelli, E. Monzani, Nature
of urea_fluoride interaction: incipient and definitive proton transfer, J. Am. Chem.
Soc. 126 (2004) 16507–16514.
[47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, et al., Gaussian 03, Revision
A.1, Gaussian, Inc, Pittsburgh PA, 2003.
[18] V. Amendola, D. Esteban-Gomez, L. Fabbrizzi, M. Licchelli, What anions do to NH-
containing receptors, Acc. Chem. Res. 39 (2006) 343–353.
[19] Z. Yang, K. Zhang, F. Gong, S. Li, J. Chen, J.S. Ma, L.N. Sobenina, A.I. Mikhaleva, B.A.
Trofimov, G. Yang, A highly selective fluorescent sensor for fluoride anion based