10.1002/anie.201914315
Angewandte Chemie International Edition
COMMUNICATION
[3] a) J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem.
Soc. 1999, 121, 9550; b) F. Izquierdo, C. Zinser, Y. Minenkov, D. B.
Cordes, A. M. Z. Slawin, L. Cavallo, F. Nahra, C. S. J. Cazin, S. P.
Nolan, ChemCatChem 2018, 10, 601; c) A. Fihri, D. Luart, C. Len, A.
Solhy, C. Chevrin, V. Polshettiwar, Dalton Trans. 2011, 40, 3116.
[4] F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752.
[5] P. Schäfer, T. Palacin, M. Sidera, S. P. Fletcher, Nat. Commun. 2017, 8,
15762.
B. Bedford, Nat. Catal. 2018, 1, 429; e) M. P. Crockett, C. C. Tyrol, A. S.
Wong, B. Li, J. A. Byers, Org. Lett. 2018, 20, 5233; f) T. Iwamoto, C.
Okuzono, L. Adak, M. Jin, M. Nakamura, Chem. Commun. 2019, 55,
1128.
[15] a) J. M. Smith, R. J. Lachicotte, P. L. Holland, Chem. Commun. 2001,
1542; b) N. A. Eckert, J. M. Smith, R. J. Lachicotte, P. L. Holland, Inorg.
Chem. 2004, 43, 3306; c) J. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C.
J. Flaschenriem, R. J. Lachicotte, P. L. Holland, J. Am. Chem. Soc.
2005, 127, 7857; d) P. L. Holland, Acc. Chem. Res. 2008, 41, 905.
[16] a) S. C. Bart, E. J. Hawrelak, E. Lobkovsky, P. J. Chirik, Organometallics
2005, 24, 5518; b) E. T. Hennessy, T. A. Betley, Science 2013, 340,
591; c) W.-T. Lee, I.-R. Jeon, S. Xu, D. A. Dickie, J. M. Smith,
Organometallics 2014, 33, 5654.
[6] C. Lamberth, J. Dinges, J. r. Dinges, Bioactive Heterocyclic Compound
Classes : Pharmaceuticals, John Wiley & Sons, Incorporated, Weinheim,
GERMANY, 2012.
[7] J. Choi, G. C. Fu, Science 2017, 356, eaaf7230.
[8] a) S. L. Zultanski, G. C. Fu, J. Am. Chem. Soc. 2013, 135, 624; b) K.
Yotsuji, N. Hoshiya, T. Kobayashi, H. Fukuda, H. Abe, M. Arisawa, S.
Shuto, Adv. Synth. Catal. 2015, 357, 1022; c) Q. Zhou, K. M. Cobb, T.
Tan, M. P. Watson, J. Am. Chem. Soc. 2016, 138, 12057; d) Z. T. Ariki,
Y. Maekawa, M. Nambo, C. M. Crudden, J. Am. Chem. Soc. 2018, 140,
78.
[17] A. B. Biernesser, B. Li, J. A. Byers, J. Am. Chem. Soc. 2013, 135,
16553.
[18] Attempts to synthesize iron amide 3 through salt metathesis reactions
led to a mixture of products, one of which could be identified as 3 in the
1H NMR spectrum.
[9] a) D. A. Everson, D. J. Weix, J. Org. Chem 2014, 79, 4793; b) J. P. G.
Rygus, C. M. Crudden, J. Am. Chem. Soc. 2017, 139, 18124; c) S.
Zhao, T. Gensch, B. Murray, Z. L. Niemeyer, M. S. Sigman, M. R.
Biscoe, Science 2018, 362, 670.
[10] I. D. Hills, M. R. Netherton, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42,
5749.
[19] M. P. Crockett, H. Zhang, C. M. Thomas, J. A. Byers, Chem. Commun.
2019, 55, 14426
[20] DOSY NMR was attempted on complex 4; however, this complex has
much broader peaks than complex 3 and as a result no signal survived
the DOSY pulse sequence.
[21] B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 2116.
[22] The kinetics of this reaction appear to be much faster than the
stoichiometric reaction. Investigations into this and other mechanistic
possiblities are ongoing and will be reported in due course.
[23] Catalytic reactions using 5 were extremely slow when borates were used
as the transmetalating reagent insstead of free amide (Figure S7).
[24] a) Y. Kamitori, M. Hojo, R. Masuda, T. Izumi, S. Tsukamoto, J. Org.
Chem 1984, 49, 4161; b) Z. Huang, J. Zhang, Y. Zhou, N.-X. Wang, Eur.
J. Org. Chem. 2011, 2011, 843.
[25] The higher reducing ability of the β-diketiminate iron complexes leads to
more facile dimerization of the alkyl halide in cases where the alkyl
halide is activated, which lowers the yield of the reaction (Figure S14).
[26] Substrates containing free alcohols and esters or ketones were not
tolerated under these conditions.
[27] a) X. Wang, S. Wang, W. Xue, H. Gong, J. Am. Chem. Soc. 2015, 137,
11562; b) X. Wang, G. Ma, Y. Peng, C. E. Pitsch, B. J. Moll, T. D. Ly, X.
Wang, H. Gong, J. Am. Chem. Soc. 2018, 140, 14490; c) A. H. Cherney,
S. J. Hedley, S. M. Mennen, J. S. Tedrow, Organometallics 2019, 38, 97.
[28] a) W. Lee, J. Zhou, O. Gutierrez, J. Am. Chem. Soc. 2017, 139, 16126;
b) A. K. Sharma, W. M. C. Sameera, M. Jin, L. Adak, C. Okuzono, T.
Iwamoto, M. Kato, M. Nakamura, K. Morokuma, J. Am. Chem. Soc.
2017, 139, 16117.
[11] K. S. Egorova, V. P. Ananikov, Organometallics 2017, 36, 4071.
[12] A. J. Hunt, T. J. Farmer, J. H. Clark, in Element Recovery and
Sustainability, The Royal Society of Chemistry, 2013, pp. 1-28.
[13] a) R. Martin, A. Fürstner, Angew. Chem. Int. Ed. 2004, 43, 3955; b) S. K.
Ghorai, M. Jin, T. Hatakeyama, M. Nakamura, Org. Lett. 2012, 14, 1066;
c) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc.
2004, 126, 3686; d) T. Hatakeyama, Y. Fujiwara, Y. Okada, T. Itoh, T.
Hashimoto, S. Kawamura, K. Ogata, H. Takaya, M. Nakamura, Chem.
Lett. 2011, 40, 1030; e) R. B. Bedford, M. A. Hall, G. R. Hodges, M.
Huwe, M. C. Wilkinson, Chem. Commun. 2009, 6430; f) R. B. Bedford,
E. Carter, P. M. Cogswell, N. J. Gower, M. F. Haddow, J. N. Harvey, D.
M. Murphy, E. C. Neeve, J. Nunn, Angew. Chem. Int. Ed. 2013, 52,
1285; g) M. Guisan-Ceinos, F. Tato, E. Bunuel, P. Calle, D. J. Cardenas,
Chem. Sci. 2013, 4, 1098; h) D. Gärtner, A. L. Stein, S. Grupe, J. Arp, A.
Jacobi von Wangelin, Angew. Chem. Int. Ed. 2015, 54, 10545; i) A.
Hedström, Z. Izakian, I. Vreto, C.-J. Wallentin, O. Norrby, Chem. Eur. J.
2015, 21, 5946.
[14] a) T. Hatakeyama, T. Hashimoto, Y. Kondo, Y. Fujiwara, H. Seike, H.
Takaya, Y. Tamada, T. Ono, M. Nakamura, J. Am. Chem. Soc. 2010,
132, 10674; b) T. Hashimoto, T. Hatakeyama, M. Nakamura, J. Org.
Chem 2012, 77, 1168; c) R. B. Bedford, P. B. Brenner, E. Carter, T. W.
Carvell, P. M. Cogswell, T. Gallagher, J. N. Harvey, D. M. Murphy, E. C.
Neeve, J. Nunn, D. Pye, Chem. Eur. J. 2014, 20, 7935; d) H. M. O’Brien,
M. Manzotti, R. D. Abrams, D. Elorriaga, H. A. Sparkes, S. A. Davis, R.
This article is protected by copyright. All rights reserved.