4
B. Mairychová et al. / Journal of Organometallic Chemistry 699 (2012) 1e4
(c) A.-A.G. Shaikh, S. Sivaram, Chem. Rev. 96 (1996) 951e976;
MHz):
d
45.2 (CH3), 62.1 (CH2), 126.9 (C (3,5)), 128.9 (C0(3,5)Ph),
(d) X. Yin, J.R. Moss, Coord. Chem. Rev. 181 (1999) 27e59;
(e) D.B. Dell0Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, Chem.
Rev. 103 (2003) 3857e3898;
130.5 (C0(4)Ph), 131.4 (C(4)), 133.5 (C0(1)Ph), 135.2 (C0(2,6)Ph),
136.7(C(1)), 143.3 (C(2,6)), 163.5 (CO). 119Sn NMR (CDCl3,
(f) Ch. Song, Catal. Today 115 (2006) 2e32;
(g) I. Omae, Catal. Today 115 (2006) 33e52.
186.49 MHz):
d
ꢀ379.2.
[2] For latest see (a) M. Honda, A. Suzuki, B. Noorjahan, K.-I. Fujimoto, K. Suzuki,
K. Tomishige, Chem. Commun. (2009) 4596e4598;
4.4. Synthesis of [2,6-(Me2NCH2)2C6H3](Bu)SnCO3 (4)
(b) M. Aresta, A. Dibenedetto, C. Pastore, C. Cuocci, B. Aresta, S. Cometa, E. De
Giglio, Catal. Today 137 (2008) 125e131;
(c) J. Bian, M. Xiao, S. Wang, Y. Lu, Y.Z. Meng, Catal. Commun. 10 (2009)
1142e1145;
(d) K. Alumusaiteer, Catal Commun. 10 (2009) 1127e1131;
(e) B.B. Fan, H.Y. Li, W.B. Fan, J.L. Zhang, R.F. Li, Appl. Catal. A 372 (2010)
94e102.
Carbon dioxide was bubbled through toluene solution (20 mL)
of 2 (0.3 g, 0.7 mmol) for 1 h at room temperature [Alternatively,
the toluene solution (20 mL) of 2 (0.3 g, 0.7 mmol) and dry ice was
stirred in an autoclave under the pressure 2 bar for 2 h]. After the
solid was precipitated from solution, the solvent was decanted and
solid residue was washed with hexane to give 4 as a white powder.
Yield: 0.2 g (61%). Mp. 238e240 ꢁC. Anal. calcd for C17H28N2O3Sn
(427.012 g molꢀ1): C, 41.9; H, 5.8. Found: C, 41.53; H, 5.42. 1H NMR
[3] (a) D.H. Gibson, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordi-
nation Chemistry II, vol. 1, Elsevier, Oxford, 2004, pp. 595e602 ch. 30;
(b) D. Ballivet-Tkatchenko, H. Chermette, L. Plasseraud, O. Walter, Dalton
Trans. (2006) 5167e5175.
[4] (a) F. Hutschka, A. Dedieu, M. Eichberger, R. Fornika, W. Leitner, J. Am. Chem.
Soc. 119 (1997) 4432e4443;
(CDCl3, 500.13 MHz): d 1.00 (t, 3H, Bu), 1.52 (m, 2H, Bu), 1.59 (m, 2H,
Bu), 1.95 (m, 2H, Bu), 2.13 (s, 6H, CH3), 2.70 (s, 6H, CH3), 3.26
(AX system, 2H, CH2), 4.17 (AX system, 2H, CH2), 7.12 (d, 2H, ArH),
(b) Y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, J. Am. Chem. Soc. 127
(2005) 4021e4032;
(c) M.L. Man, K.C. Lam, W.N. Sit, S.M. Ng, Z. Zhou, Z. Lin, C.P. Lau, Chem. Eur. J.
12 (2006) 1004e1015;
7.36 (t, 1H, ArH). 13C NMR (CDCl3, 125.77 MHz):
d
13.8 (C0(4)Bu),
18.2 (C0(1)Bu), 26.7 (C0(3)Bu), 26.9 (C0(2)Bu), 43.5 (CH3), 46.6 (CH3),
63.0 (CH2), 126.6 (C(3,5)), 131.4 (C(4)), 135.3 (C(2,6)), 143.4 (C(1)),
(d) K. Wakamatsu, A. Orita, J. Otera, Organometallics 29 (2010) 1290e1295.
[5] (a) J. Beckmann, D. Dakternieks, A. Duthie, N.A. Lewcenko, C. Mitchell, Angew.
Chem. Int. Ed. 43 (2004) 6683e6685;
163.9 (CO). 119Sn NMR (CDCl3, 186.49 MHz):
d
ꢀ314.0.
(b) E. Simon-Manso, C.P. Kubiak, Angew. Chem. Int. Ed 44 (2005) 1125e1128.
[6] (a) A.J. Bloodworth, A.G. Davies, S.C. Vasishtha, J. Chem. Soc.
C (1967)
1309e1313;
4.5. X-ray structure determination
(b) S.J. Blunden, R. Hill, J.N.R. Ruddick, J. Organomet. Chem. 267 (1984) C5eC8;
(c) J. Kümmerlen, A. Sebald, H. Reuter, J. Organomet. Chem. 427 (1992)
309e323.
Compounds 1 and 2 were dissolved in hexane and slow diffu-
sion of prepared solutions gave X-ray quality material. Compound 3
and 4 were dissolved in CH2Cl2 and slow diffusion of prepared
solutions gave X-ray quality material. The X-ray data for colorless
crystals of 1e4 (see Table S1 in supporting information) were
obtained at 150 K using Oxford Cryostream low temperature device
[7] (a) J.-C. Choi, T. Sakakura, T. Sako, J. Am. Chem. Soc. 121 (1999) 3793e3794;
(b) T. Sakakura, J.-C. Choi, Y. Saito, T. Masuda, T. Sako, T. Oriyama, J. Org. Chem.
64 (1999) 4506e4508;
(c) D. Ballivet-Tkatchenko, O. Douteau, S. Stutzmann, Organometallics 19
(2000) 4563e4567;
(d) H. Yasuda, J.-C. Choi, S.-C. Lee, T. Sakakura, J. Organomet. Chem. 659 (2002)
133e141;
(e) D. Ballivet-Tkatchenko, T. Jerphagnon, R. Ligabue, L. Plasseraud, D. Poinsot,
Appl. Catal. A 255 (2003) 93e99;
on
a
Nonius KappaCCD diffractometer with MoKa radiation
and scan
(l
¼ 0.71073 Å), a graphite monochromator, and the
4
c
(f) H.C. Clark, R.G. Goel, J. Organometal. Chem. 7 (1967) 263e272.
mode. Data reductions were performed with DENZO-SMN [13]. The
absorption was corrected by integration methods [14]. Structures
were solved by direct methods (Sir92) [15] and refined by full
matrix least-square based on F2 (SHELXL97) [16]. Hydrogen atoms
were mostly localized on a difference Fourier map, however to
ensure uniformity of the treatment of the crystal, all hydrogen
atoms were recalculated into idealized positions (riding model) and
assigned temperature factors Hiso(H) ¼ 1.2 Ueq(pivot atom) or of
1.5 Ueq for the methyl moiety with CeH ¼ 0.96, 0.97, and 0.93 Å for
methyl, methylene and hydrogen atoms in aromatic rings moiety,
respectively.
ꢁꢀ ꢀ
ꢀ
ꢀ
[8] (a) A. Ruzicka, R. Jambor, J. Brus, I. Císarová, J. Holecek, Inorg. Chim. Acta. 323
(2001) 163e170;
ꢁꢀ ꢀ
ꢀ
ꢀ
(b) A. Ruzicka, R. Jambor, I. Císarová, J. Holecek, Chem. Eur. J. 9 (2003)
2411e2418.
[9] 1:
C36H48N4O2Sn2,
triclinic,
P
,
a ¼ 9.8670(6),
b ¼ 11.0989(6),
ꢀ1
c ¼ 18.7191(12),
a
¼ 77.892(5)ꢁ,
b
¼ 77.300(6)ꢁ,
g
¼ 65.238(4)ꢁ, V ¼ 1799.9(2)
Å3, Z ¼ 2, R1 (obsd data) ¼ 0.0554, wR2 (all data) ¼ 0.1112. CCDC
835082.2: C32H56N4O2Sn2, triclinic,
P
ꢀ1
,
a ¼ 9.8370(4), b ¼ 9.9380(3),
c ¼ 10.2931(4),
a
¼ 69.179(3)ꢁ,
b
¼ 65.041(3)ꢁ,
g
¼ 84.333(3)ꢁ, V ¼ 851.14(6)
Å3, Z ¼ 1, R1 (obsd data) ¼ 0.0220, wR2 (all data) ¼ 0.0532. CCDC 835514.
[10] 3: C19H24N2O3Sn, monoclinic, P21/c
,
a ¼ 9.2780(2), b ¼ 14.8611(11),
c ¼ 16.2460(13),
a
¼ 90.0ꢁ,
b
¼ 122.122(4)ꢁ,
g
¼ 90.0(4)ꢁ, V ¼ 1897.1(2) Å3,
Z ¼ 4, R1 (obsd data) ¼ 0.0424, wR2 (all data) ¼ 0.1217. CCDC 835515. 4: (2 ꢂ 4),
CH2Cl2: C35H52N4Cl2O6Sn, triclinic,
P
,
a ¼ 9.5980(11), b ¼ 12.1691(18),
ꢀ1
b
c ¼ 18.2560(10),
a
¼ 91.480(7)ꢁ,
¼ 101.821(8)ꢁ,
g
¼ 103.742(9)ꢁ,
V ¼ 2021.1(4) Å3, Z ¼ 2, R1 (obsd data) ¼ 0.0324, wR2 (all data) ¼ 0.0776. CCDC
Acknowledgment
835513.
[11] (a) M.H. Hsu, R.T. Chen, W.S. Sheu, M. Shieh, Inorg. Chem. 45 (2006)
The authors wish to thank the Grant Agency of the Czech
Republic (project no. P106/10/0443) and The Ministry of Education
of the Czech Republic (projects no. VZ0021627501) for financial
support.
6740e6747;
ꢀ
ꢁꢀ ꢀ
ꢀ
(b) L. Dostál, R. Jambor, A. Ruzicka, M. Erben, R. Jirásko, E. Cernosková,
ꢀ
J. Holecek, Organometallics 28 (2009) 2633e2636.
[12] (a) D. Ballivet-Tkatchenko, R. Burgat, S. Chambrey, L. Plasseraud, P. Richard,
J. Organomet. Chem. 691 (2006) 1498e1504;
(b) G.L. Zheng, J.F. Ma, J. Yang, Y.Y. Li, X.R. Hao, Chem. Eur. J. 10 (2004)
3761e3768;
(c) S.F. Yin, J. Muruayma, T. Yamashita, S. Shimada, Angew. Chem., Int. Ed. 47
(2008) 6590e6593;
(d) H.J. Breunig, L. Königsmann, E. Lork, M. Nema, N. Philipp, C. Silvestru,
A. Soran, R.A. Varga, R. Wagner, Dalton Trans. (2008) 1831e1842;
Appendix. Supplementary material
Supplementary material associated with this article can
ꢀ
ꢀ
ꢀ
(e) Z. Padelková, H. Vankátová, I. Císarová, M.S. Nechaev, T.A. Zevaco,
ꢁꢀ ꢀ
O. Walter, A. Ruzicka, Organometallics 28 (2009) 2629e2632.
[13] Z. Otwinowski, W. Minor, Methods in Enzymology 276 (1997) 307.
[14] P. Coppens, in: F.R. Ahmed, S.R. Hall, C.P. Huber (Eds.), Crystallographic
Computing, Munksgaard, Copenhagen, 1970, pp. 255e270.
[15] A. Altomare, G. Cascarano, C. Giacovazzo, A.J. Guagliardi, Appl. Crystallogr 26
(1993) 343.
References
[1] For reviews, see (a) P.G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 95 (1995)
259e272;
[16] G.M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, 1997.
(b) D.H. Gibson, Chem. Rev. 96 (1996) 2063e2096;