relatively short O1ꢁ ꢁ ꢁO2 separation of 2.971(2) A, a distance
that is indicative of H-bonds being present between the two
ligands.17z In addition, the hydroxo ligands formed intra-
molecular H-bonds with the neopentylamino groups of
[H4bnppap]ꢀ. All the N–H vectors are positioned toward the
hydroxo ligands with N–H–O angles of greater than 1641. This
alignment produced Oꢁ ꢁ ꢁN distances that are less than 2.8 A,
which, taken together, are consistent with the formation of
strong H-bonds. FTIR measurements are also consistent with
intramolecular H-bonds being present in [CoII2H4bnppap(OH)2]+
with broad signals from the amino NH groups appearing at
3235 cmꢀ1. We were unable to observed FTIR signals from the
hydroxo ligand, presumably because they are significantly
broadened because of the H-bonds.
The molecular structure of [MnII2H4bnppap(OH)2]+ was
also determined and contains nearly the same structural
features as the cobalt analogue (Fig. 2B). Disorder in the
neopentyl groups limited the quality of the structure;8 never-
theless, it is clear at the present resolution that each MnII
center has trigonal bipyramidal coordination geometry with
L. Francas, E. Mas-Marza, L. Esrlche and A. Llobet, Inorg. Chem.,
2008, 47, 1824–1834; (d) T. A. Betley, Q. Wu, T. V. Voorhis and
D. G. Nocera, Inorg. Chem., 2008, 47, 1849–1861.
2 (a) Mononuclear systems G. E. Alliger, P. Muller, C. C. Cummins
¨
and D. G. Nocera, Inorg. Chem., 2010, 49, 3697–3699; (b) L. Que
Jr. and W. B. Tolman, Angew. Chem., Int. Ed., 2002, 41, 1114.
3 (a) For examples of mononuclear systems that form O–O bonds
see: L. M. Mirica, X. Ottenwaelder and T. D. P Stack, Chem. Rev.,
2004, 104, 1013–1046; (b) E. A. Lewis and W. B. Tolman, Chem.
Rev., 2004, 104, 1047–1076.
4 For examples of M–OHn in main group clusters see:
(a) H. W. Roesky, S. Singh, V. Jancik and V. Chandrasekhar,
Acc. Chem. Res., 2004, 969–981; (b) J. W. Leeland, F. J. White and
J. B. Love, J. Am. Chem. Soc., 2011, 133, 7320–7323.
5 J. A. Gilbert, D. S. Eggleston, W. R. Murphy Jr., D. A.
Geselowitz, S. W. Gersten, D. J. Hodgson and T. J. Meyer,
J. Am. Chem. Soc., 1985, 107, 3855–3864.
6 C. Duboc-Toia, S. Me
M. Fontecave, Inorg. Chem., 1997, 36, 6148–6149.
7 (a) F. Bozoglian, S. Romain, M. Z. Ertem, T. K. Todorova,
C. Sens, J. Mola, M. Rodrıgues, L. Romero, J. Benet-Buchholz,
nage, J.-M. Vincet, A.-P. Therese and
´ ´
´
X. Fontrodona, C. J. Cramer, L. Gagliardi and A. Llobet, J. Am.
Chem. Soc., 2009, 131, 15176–15187; (b) F. Meyer and R. Rutsch,
Chem. Commun., 1998, 1037–1038; (c) B. Baner-Siebenlist,
F. Meyer, E. Farkas, D. Vidovic and S. Dechert, Chem.–Eur. J.,
2005, 11, 4349–4360; (d) T. Graef, J. Galezowska, S. Dechert and
F. Meyer, Eur. J. Inorg. Chem., 2011, 2011, 4161–4167; (e) J. B.
H. Strautmann, S. Walleck, A. Strammler and T. Glaser, Chem.
Commun., 2011, 47, 695–697.
t
Mn1 = 0.99 and tMn2 = 0.95 and a Mn1ꢁ ꢁ ꢁMn2 separation of
4.303 A. Note that this type of coordination also promotes the
Mn1–O1 and Mn2–O2 vectors to assume a syn-configuration
(O1ꢁ ꢁ ꢁO2, 3.235 A) that is supported by an extensive intra-
molecular H-bonding network.
8 (a) J. C. Roder, F. Meyer and H. Pritzkow, Organometallics, 2001,
20, 811–817; (b) J. Klingele, S. Dechert and F. Meyer, Coord.
Chem. Rev., 2009, 253, 2698–2741.
In summary, a new dinucleating ligand, [H4bnppap]ꢀ has
been developed that contains four appended amino groups
connected via a pyrazolate bridge. The ligand allows for
the preparation of new dinuclear complexes of cobalt and
manganese, each of which has two M–OH units. The intra-
molecular H-bonding network and the rigidity of ligand
framework successfully reinforces terminal hydroxide coordi-
nation and the orientation of the hydroxo groups. These
attributes result in rare examples of discrete molecular species
with terminal metal hydroxides arranged in a syn-fashion that
are in close proximity (less than 3.2 A). Systems of this type
allow for futher investigations into the interactions between
M–O(H) groups, including exploring their reactivities.
9 (a) H. Arii, Y. Funahashi, K. Jitsukawa and H. Masuda, Dalton
Trans., 2003, 2115–2116; (b) G. Feng, D. Natale, R. Prabaharan,
J. C. Mareque-Rivas and N. H. Williams, Angew. Chem., 2006,
118, 7214–7217.
10 (a) R. L. Shook and A. S. Borovik, Inorg. Chem., 2011, 49,
3646–3660 and references therin; (b) A. S. Borovik, Acc. Chem.
Res., 2005, 38, 54–61 and references therein; (c) S. Ogo, S. Wada,
Y. Watanabe, M. Iwase, A. Wada, M. Harata, K. Jitsukawa,
H. Masuda and H. Einaga, Angew. Chem., Int. Ed., 1998, 37,
2102–2104; (d) J. C. Marqes-Rivas, R. Prabaharan and S. Parsons,
Dalton Trans., 2004, 1648–1655.
11 (a) P. J. Zinn, D. R. Powell, V. W. Day, M. P. Hendrich,
T. N. Sorrell and A. S. Borovik, Inorg. Chem., 2006, 45,
3484–3486; (b) P. J. Zinn, T. N. Sorrell, D. R. Powell, V. W.
Day and A. S. Borovik, Inorg. Chem., 2007, 46, 10120–10132.
12 G. K.-Y. Ng, J. W. Ziller and A. S. Borovik, Inorg. Chem., 2011,
50, 7922–7924.
13 (a) R. L. Shook, S. M. Peterson, J. Greaves, C. Moore,
A. L. Rheingold and A. S. Borovik, J. Am. Chem. Soc., 2011,
133, 5810–5817; (b) G. K. Ingle, M. M. Makowska-Grzyka,
E. Szajna-Fuller, I. Sen, J. C. Price, A. M. Arif and
L. M. Berreau, Inorg. Chem., 2007, 46, 1471–1480;
(c) K. Rudzka, A. M. Arif and L. M. Berreau, J. Am. Chem.
Soc., 2006, 128, 17018–17023; (d) E. Szajna, M. M. Makowska-
Grzyka, C. C. Wasden, A. M. Arif and L. M. Berreau, Inorg.
Chem., 2005, 44, 7595–7605; (e) J. C. Marques-Rivas, E. Salvagni
and S. Parsons, Dalton Trans., 2004, 4185–4192; (f) J. C. Marques-
Rivas, R. T. M. de Rosoles and S. Parsons, Dalton Trans., 2003,
2156–2163.
Notes and references
z ESI-MS data: [CoII2H4bnppap(18OH)2]+: m/z = 985.8 (calcd,
985.5); ([MnII2H4bnppap(18OH)2]+: m/z = 977.5 (calcd, 977.5).
y Magnetic moments were determined in DMSO using the Evans’
method. The calculations were done relative to the shift in the solvent
peak.
z For [CoII2H4bnppap(OH)2]+ hydrogen atoms on the amino groups
were located from a difference-Fourier map and refined (x,y,z,
and Uiso), while those of the hydroxo ligands were included using a
riding model.
8 Various attempts using different solvents, experimental conditions,
and counter anions to obtain crystals that gave a better structure of
[MnII2H4bnppap(OH)2](BPh4) were unsuccessful. The freely rotating
neo-pentyl groups impose high intrinsic disorder to the cationic
complex, which likely explains the poor diffraction of the crystals.
14 L. Grubel, A. L. Fuller, B. M. Chambers, A. M. Arif and
L. M. Berreau, Inorg. Chem., 2010, 49, 1071–1081.
15 R. S. Drago, Physical Methods for Chemists, Surfside, Gainesville,
FL, 2nd edn,1992, ch. 11.
16 A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijin and
G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349–1356.
17 R. Parthasarathi and V. Subramanian, in Hydrogen Bonding—
New Insights, ed. S. J. Grabowski, Springer, Dordrecht, 2006,
ch. 1, pp. 1–50.
1 (a) Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Nature,
2011, 473, 55–61; (b) Y. Surendranath, M. W. Kanan and
D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 16501–16509;
(c) I. Romero, M. Rodrıgues, C. Sens, J. Mola, M. R. Kolllpara,
´
c
2548 Chem. Commun., 2012, 48, 2546–2548
This journal is The Royal Society of Chemistry 2012