R. M. Ortuno, Amino Acids, 2011, 41, 673; (c) G. V. M. Sharma,
P. Jayaprakash, K. Narsimulu, A. R. Sankar, K. R. Reddy, P. R.
Krishna and A. C. Kunwar, Angew. Chem., Int. Ed., 2006, 45, 2944.
4 Reviews: (a) A. Roy, P. Prabhakaran, P. K. Baruah and
G. J. Sanjayan, Chem. Commun., 2011, 47, 11593; (b) P. G.
Vasudev, S. Chatterjee, N. Shamala and P. Balaram, Chem. Rev.,
2011, 111, 657; (c) L. K. A. Pilsl and O. Reiser, Amino Acids, 2011,
41, 709; (d) W. S. Horne and S. H. Gellman, Acc. Chem. Res., 2008,
41, 1399; Recent examples: (e) L. A. Guo, M. Almeida, W. Zhang,
A. G. Reidenbach, S. H. Choi, I. A. Guzei and S. H. Gellman,
J. Am. Chem. Soc., 2010, 132, 7868; (f) L. A. Guo, M. Almeida,
W. Zhang, I. A. Guzei, B. K. Parker and S. H. Gellman, J. Am.
Chem. Soc., 2009, 131, 16018; (g) S. Chatterjee, P. G. Vasudev,
S. Raghotama, C. Ramakrishnan, N. Shamala and P. Balaram,
J. Am. Chem. Soc., 2009, 131, 5956; (h) L. Fischer, P. Claudon,
N. Pendem, E. Miclet, C. Didierjean, E. Ennifar and G. Guichard,
Angew. Chem., Int. Ed. Engl., 2010, 49, 1067.
Fig. 4 (a) Overlay of the 10 lowest energy structures of tetramer 2
(blue), hexamer 3 (red) and octamer 4 (green) using the backbone
atoms of residues 2 to 4 for superposition. (b,c) Orthogonal views of
the lowest energy structure of the octamer 4.
5 (a) A. Rath, A. R. Davidson and C. M. Deber, Biopolym. Pept.
Sci., 2005, 80, 179; (b) S. S.-C. Li, Biochem. J., 2005, 390, 641.
6 (a) B. R. Huck, J. D. Fisk, I. A. Guzei, H. A. Carlson and S. H.
Gellman, J. Am. Chem. Soc., 2003, 125, 9035; (b) B. R. Huck,
J. M. Langenhan and S. H. Gellman, Org. Lett., 1999, 1, 1717.
7 (a) S. Abele, K. Vogtli and D. Seebach, Helv. Chim. Acta, 1999,
¨
no such geometry has been yet described for AIB residues
within a-peptides.
82, 1539; (b) G. Luppi, R. Galeazzi, M. Garavelli, F. Formaggio
and C. Tomasini, Org. Biomol. Chem., 2004, 2, 2181; (c) Y. Otani,
S. Futaki, T. Kiwada, Y. Sugiura, A. Muranaka, N. Kobayashi,
M. Uchiyama, K. Yamaguchi and T. Ohwada, Tetrahedron, 2006,
62, 11635; (d) G. R. Krow, N. Liu, M. Sender, G. Lin,
R. Centafont, P. E. Sonnet, C. DeBrosse, C. W. Ross III, P. J.
Carroll, M. D. Shoulders and R. T. Raines, Org. Lett., 2010,
12, 5438.
Structures obtained revealed thus a new stable extended fold
characterized by a four-fold symmetry.22 It is noteworthy that
since oligomers as short as 4-residues adopt this extended
conformation, the folding process is probably governed by
local steric interactions, no hydrogen bond being required.
These features recall the polyproline II helix properties, stable
without hydrogen bonding, and showing a three-fold symmetry
for the pyrrolidine ring.23
8 F. Machetti, A. Ferrali, G. Menchi, E. G. Occhiato and
A. Guarna, Org. Lett., 2000, 2, 3987.
9 (a) C. T. Hoang, V. Alezra, R. Guillot and C. Kouklovsky, Org. Lett.,
2007, 9, 2521; (b) C. T. Hoang, F. Bouillere, S. Johannesen, A. Zulauf,
C. Panel, D. Gori, A. Pouilhes, V. Alezra and C. Kouklovsky, J. Org.
Chem., 2009, 74, 4177; (c) F. Bouillere, R. Guillot, C. Kouklovsky and
V. Alezra, Org. Biomol. Chem., 2011, 9, 394.
10 E. A. Porter, X. Wang, M. A. Schmitt and S. H. Gellman, Org.
Lett., 2002, 4, 3317.
11 (a) M. Branca, S. Pena, D. Gori, R. Guillot, V. Alezra and
C. Kouklovsky, J. Am. Chem. Soc., 2009, 131, 10711; (b) M. Branca,
D. Gori, R. Guillot, V. Alezra and C. Kouklovsky, J. Am. Chem. Soc.,
2008, 130, 5864.
12 See ESIw.
13 G. Guichard, A. Violette, G. Chassaing and E. Miclet, Magn.
Reson. Chem., 2008, 46, 918.
14 N. H. Andersen, J. W. Neidigh, S. M. Harrix, G. M. Lee, Z. Liu
and H. Tong, J. Am. Chem. Soc., 1997, 119, 8547.
15 D. Seebach, A. K. Beck and D. J. Bierbaum, Chem. Biodiversity,
2004, 8, 1111.
16 J. M. Schmidt, J. Magn. Reson., 2007, 186, 34.
17 See ESIw, Tables S11–S13.
18 We used crystallographic data of a derivative of 1 to determine
some distances within the pyrrolidine ring and to incorporate them
into the protocol.
In conclusion, we have shown that oligomers alternating
AIB and cyclic g-amino acid 1 are able to adopt an extended
structure in solution, without any hydrogen bond, regardless of
the peptide length. Concerning the AIB residue, the dihedral f
and c angles observed in our structure are close to a local
minimum in the Ramachandran map but have not been found
in other structures. We have thus highlighted a new extended
helix showing a four-fold symmetry. To our knowledge, there is
no precedent for this type of extended structure in the b-peptide
or g-peptide families. Additional peptides with a functionalized
nitrogen lactam or without the AIB residue are under investiga-
tion as well as potential biological applications of these com-
pounds, such as inhibition of protein–protein interactions.
This research was supported by the Ministere de l’Enseignement
Superieur et de la Recherche (doctoral grant to F.B.) and by
´
ANR (Agence Nationale de la Recherche; ANR grant no
ANR-08-JCJC0099). D. F. was a research assistant of the Fund
for Scientific Research Flanders (FWO-Vlaanderen).
19 F. Delaglio, Dynamo NMR Molecular Structure Engine, version
20 This is consistent with the following observations: for compounds
23 and 4, the AIB intraresidue ROE correlations between HN
Notes and references
b
amide protons and each CH3 methyl group were of the same
magnitude and in the medium range which is incompatible with a
1 Reviews: (a) T. A. Martinek and F. Fulop, Chem. Soc. Rev., DOI:
¨
¨
10.1039/c1cs15097a; (b) G. Guichard and I. Huc, Chem. Commun.,
single f–dihedral angle at f = +601 or at f = ꢀ601. Further-
hetero-
C
2011, 47, 5933; (c) D. Seebach, D. F. Hook and A. Glattli,
more, the relatively high value of the measured 3JH
N
¨
Biopolym. Pept. Sci., 2006, 84, 23; (d) C. M. Goodman, S. Choi,
S. Shandler and W. F. DeGrado, Nat. Chem. Biol., 2007, 3, 252.
2 Reviews: (a) R. P. Cheng, S. H. Gellman and W. F. DeGrado,
Chem. Rev., 2001, 101, 3219; (b) D. Seebach and J. Gardiner,
Acc. Chem. Res., 2008, 41, 1366.
nuclear couplings (3.0 ꢁ 0.1 Hz) precludes rapid exchange between
the two f = ꢁ 601 dihedral angles, both being characterized by a
very weak 3JH
C (ca. 0.5 Hz), see P. E. Hansen, Prog. Nucl. Magn.
N
Reson. Spectrosc., 1980, 14, 175.
21 (a) T. T. Tran, H. Treutlein and A. W. Burgess, Protein Eng., Des. Sel.,
2006, 19, 401; (b) S. Aravinda, N. Shamala and P. Balaram, Chem.
Biodiversity, 2008, 5, 1238.
22 Vicinal scalar couplings were constant in the 293–321 K tempera-
ture range which indicates that the extended conformation is not
disrupted when increasing the temperature.
3 Review on g-peptides: F. Bouillere, S. Thetiot-Laurent,
´
C. Kouklovsky and V. Alezra, Amino Acids, 2011, 41, 687. Recent
examples: (a) L. Guo, W. Zhang, A. G. Reidenbach, M. W.
Giuliano, I. A. Guzei, L. C. Spencer and S. H. Gellman, Angew.
Chem., Int. Ed., 2011, 50, 5843; (b) R. Gutierrez-Abad, D. Carbajo,
P. Nolis, C. Acosta-Silva, J. A. Cobos, O. Illa, M. Royo and
23 T. P. Creamer, Proteins, 1998, 33, 218.
c
1984 Chem. Commun., 2012, 48, 1982–1984
This journal is The Royal Society of Chemistry 2012