Journal of the American Chemical Society
Page 4 of 6
1.
2.
Smith, A. M.; Whyman, R., Review of Methods for the Catalytic
of Imines. Chem. Eur. J. 2015, 21, 8056-8059; (b) Nicasio, J. A.;
Steinberg, S.; Ines, B.; Alcarazo, M., Tuning the Lewis Acidity of
Boranes in Frustrated Lewis Pair Chemistry: Implications for the
Hydrogenation of Electron-Poor Alkenes. Chem. Eur. J. 2013, 19,
11016-11020.
Hydrogenation of Carboxamides. Chem. Rev. 2014, 114, 5477-5510.
(a) Schneider, H. J.; Adkins, H.; Mcelvain, S. M., The Hydrogenation
of Amides and Ammonium Salts - the Transalkylation of Tertiary
Amines. J. Am. Chem. Soc. 1952, 74, 4287-4290; (b) Adkins, H.;
Wojcik, B., Catalytic Hydrogenation of Amides to Amines. J. Am.
Chem. Soc. 1934, 56, 2419-2424.
Stein, M.; Breit, B., Catalytic Hydrogenation of Amides to Amines
under Mild Conditions. Angew. Chem. Int. Ed. 2013, 52, 2231-2234.
(a) Nunez, A. A.; Eastham, G. R.; Cole-Hamilton, D. J., The synthesis
of amines by the homogeneous hydrogenation of secondary and
primary amides. Chem. Commun. 2007, 3154-3156; (b) Coetzee, J.;
Dodds, D. L.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Slawin, A.
M. Z.; Cole-Hamilton, D. J., Homogeneous Catalytic Hydrogenation
of Amides to Amines. Chem. Eur. J. 2013, 19, 11039-11050.
Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M., A Convenient and
General Iron-Catalyzed Reduction of Amides to Amines. Angew.
Chem. Int. Ed. 2009, 48, 9507-9510.
(a) Hanada, S.; Tsutsumi, E.; Motoyama, Y.; Nagashima, H., Practical
Access to Amines by Platinum-Catalyzed Reduction of Carboxamides
with Hydrosilanes: Synergy of Dual Si-H Groups Leads to High
Efficiency and Selectivity. J. Am. Chem. Soc. 2009, 131, 15032-15040;
(b) Kuwano, R.; Takahashi, M.; Ito, Y., Reduction of amides to amines
via catalytic hydrosilylation by a rhodium complex. Tetrahedron Lett.
1998, 39, 1017-1020.
(a) Kovalenko, O. O.; Volkov, A.; Adolfsson, H., Mild and Selective
Et2Zn-Catalyzed Reduction of Tertiary Amides under
Hydrosilylation Conditions. Org. Lett. 2015, 17, 446-449; (b) Das, S.;
Addis, D.; Zhou, S. L.; Junge, K.; Beller, M., Zinc-Catalyzed Reduction
of Amides: Unprecedented Selectivity and Functional Group
Tolerance J. Am. Chem. Soc. 2010, 132, 4971-4971.
1
2
3
4
5
6
7
8
16. (a) Tussing, S.; Kaupmees, K.; Paradies, J., Structure-Reactivity
Relationship in the Frustrated Lewis Pair (FLP)-Catalyzed
Hydrogenation of Imines. Chem. Eur. J. 2016, 22, 7422-7426; (b)
Greb, L.; Daniliuc, C. G.; Bergander, K.; Paradies, J., Functional-
Group Tolerance in Frustrated Lewis Pairs: Hydrogenation of
Nitroolefins and Acrylates. Angew. Chem. Int. Ed. 2013, 52, 5876-
5879.
3.
4.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
17. (a) Zelli, R.; Zeinyeh, W.; Haudecoeur, R.; Alliot, J.; Boucherle, B.;
Callebaut, I.; Decout, J.-L.,
A One-Pot Synthesis of Highly
Functionalized Purines. Org. Lett. 2017, 19, 6360-6363; (b) Lebel, H.,
Thiocarboxylic acids and derivatives. Thioamides. Sci. Synth. 2005,
22, 141-179; (c) Oxalyl Chloride. In Encyclopedia of Reagents for
Organic Synthesis.
5.
6.
18. The reaction can also be performed with oxalyl bromide.
19. (a) Greb, L.; Tussing, S.; Schirmer, B.; Ona-Burgos, P.; Kaupmees, K.;
Lokov, M.; Leito, I.; Grimme, S.; Paradies, J., Electronic effects of
triarylphosphines in metal-free hydrogen activation: a kinetic and
computational study. Chem. Sci. 2013, 4, 2788-2796; (b) Greb, L.;
Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies,
J., Metal-free Catalytic Olefin Hydrogenation: Low-Temperature H2
Activation by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2012, 51,
10164-10168.
20. The boranes remained intact throughout the reaction as evidenced by
1H and 11B NMR spectroscopy despite the strong acidic conditions.
21. (a) Mahdi, T.; Stephan, D. W., Enabling Catalytic Ketone
Hydrogenation by Frustrated Lewis Pairs. J. Am. Chem. Soc. 2014,
136, 15809-15812; (b) Scott, D. J.; Fuchter, M. J.; Ashley, A. E.,
Nonmetal Catalyzed Hydrogenation of Carbonyl Compounds. J. Am.
Chem. Soc. 2014, 136, 15813-15816; (c) Gyomore, A.; Bakos, M.;
Foldes, T.; Papai, I.; Domjan, A.; Soos, T., Moisture-Tolerant
Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and
Ketones. ACS Catal. 2015, 5, 5366-5372.
22. Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.;
Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I., pKa values in organic
chemistry – Making maximum use of the available data. Tetrahedron
Lett. 2018, 59, 3738-3748.
23. (a) Braun, J. V., Ueber 1.5‐Dibrompentan. Berichte der deutschen
chemischen Gesellschaft 1904, 37, 3210-3213; (b) Bieron, J. F.;
Dinan, F. J., Rearrangement and elimination of the amido group. In
Amides, Zabicky, J., Ed. John Wiley & Sons Ltd.: 1970.
24. (a) Klamt, A.; Schuurmann, G., Cosmo - a New Approach to
Dielectric Screening in Solvents with Explicit Expressions for the
Screening Energy and Its Gradient. Perkin Trans. 2 1993, 799-805;
(b) Eckert, F.; Klamt, A., Fast solvent screening via quantum
chemistry: COSMO-RS approach. AIChE 2002, 48, 369-385; (c)
Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple
zeta valence and quadruple zeta valence quality for H to Rn: Design
and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-
3305; (d) Zhao, Y.; Truhlar, D. G., Design of density functionals that
are broadly accurate for thermochemistry, thermochemical kinetics,
and nonbonded interactions. J. Phys. Chem. A 2005, 109, 5656-5667;
(e) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010,
132, 154104; (f) Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the
Damping Function in Dispersion Corrected Density Functional
Theory. J. Comput. Chem. 2011, 32, 1456-1465; (g) Grimme, S.;
Brandenburg, J. G.; Bannwarth, C.; Hansen, A., Consistent Structures
and Interactions by Density Functional Theory with Small Atomic
Orbital Basis Sets. J. Chem. Phys. 2015, 143, 54107; (h) Furche, F.;
Ahlrichs, R.; C.Hättig; Klopper, W.; Sierka, M.; Weigend, F.,
Turbomole. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 91–
100; (i) Axilrod, B. M.; Teller, E., Interaction of the van Der Waals
7.
8.
9.
Chardon, A.; El Dine, T. M.; Legay, R.; De Paolis, M.; Rouden, J.;
Blanchet, J., Borinic Acid Catalysed Reduction of Tertiary Amides
with Hydrosilanes: A Mild and Chemoselective Synthesis of Amines.
Chem. Eur. J. 2017, 23, 2005-2009.
(a) Chadwick, R. C.; Kardelis, V.; Lim, P.; Adronov, A., Metal-Free
Reduction of Secondary and Tertiary N-Phenyl Amides by
Tris(pentafluorophenyl)boron-Catalyzed Hydrosilylation. J. Org.
Chem. 2014, 79, 7728-7733; (b) Huang, P. Q.; Lang, Q. W.; Wang, Y.
R., Mild Metal-Free Hydrosilylation of Secondary Amides to Amines.
J. Org. Chem. 2016, 81, 4235-4243.
10. Augurusa, A.; Mehta, M.; Perez, M.; Zhu, J.; Stephan, D. W., Catalytic
reduction of amides to amines by electrophilic phosphonium cations
via FLP hydrosilylation. Chem. Commun. 2016, 52, 12195-12198.
11. Barbe, G.; Charette, A. B., Highly chemoselective metal-free
reduction of tertiary amides. J. Am. Chem. Soc. 2008, 130, 18-19.
12. Pelletier, G.; Bechara, W. S.; Charette, A. B., Controlled and
Chemoselective Reduction of Secondary Amides. J. Am. Chem. Soc.
2010, 132, 12817-12819.
13. (a) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W.,
Reversible, metal-free hydrogen activation. Science 2006, 314, 1124-
1126; (b) Ullrich, M.; Lough, A. J.; Stephan, D. W., Reversible, Metal-
Free, Heterolytic Activation of H2 at Room Temperature. J. Am.
Chem. Soc. 2009, 131, 52-53; (c) Stephan, D. W., Frustrated Lewis
Pairs. J. Am. Chem. Soc. 2015, 137, 10018-10032; (d) Stephan, D. W.,
Frustrated Lewis Pairs: From Concept to Catalysis. Acc. Chem. Res.
2015, 48, 306-316; (e) Stephan, D. W.; Erker, G., Frustrated Lewis
Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int.
Ed. 2010, 49, 46-76; (f) Stephan, D. W.; Erker, G., Frustrated Lewis
Pair Chemistry: Development and Perspectives. Angew. Chem. Int.
Ed. 2015, 54, 6400-6441; (g) Paradies, J., Frustrated Lewis Pair
Catalyzed Hydrogenations. Synlett 2013, 777-780.
14. Welch, G. C.; Stephan, D. W., Facile Heterolytic Cleavage of
Dihydrogen by Phosphines and Boranes. J. Am. Chem. Soc. 2007,
129, 1880-1881.
15. (a) Tussing, S.; Greb, L.; Tamke, S.; Schirmer, B.; Muhle-Goll, C.;
Luy, B.; Paradies, J., Autoinduced Catalysis and Inverse Equilibrium
Isotope Effect in the Frustrated Lewis Pair Catalyzed Hydrogenation
ACS Paragon Plus Environment