T. A. Darwish et al. / Tetrahedron Letters 53 (2012) 931–935
935
Figure 6. Observed (points) and calculated (solid line) neutron reflectometry profiles for a TCTA-d24/Ir(ppy)3:CBP bilayer film on Si. Inset shows the SLD profile.
layer having an SLD of ꢀ2.3 ꢁ 10ꢂ6 Åꢂ2 and the TCTA layer with an
3. (a) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.;
Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539; (b) Lo, S.-C.; Burn,
P. L. Chem. Rev. 2007, 107, 1097; (c) Burn, P. L.; Lo, S.-C.; Samuel, I. D. W. Adv.
Mater. 2007, 19, 1675.
4. (a) Giebink, N. C.; D’Andrade, B. W.; Weaver, M. S.; Brown, J. J.; Forrest, S. R. J.
Appl. Phys. 2009, 105, 124514; (b) Sivasubramaniam, V.; Brodkorb, F.; Hanning,
S.; Buttler, O.; Loebl, H. P.; van Elsbergen, V.; Boerner, H.; Scherf, U.;
Kreyenschmidt, M. Solid State Sci. 2009, 11, 1933; (c) Chang, J.; Yu, Y.-J.; Na, J.
H.; An, J.; Im, C.; Choi, D.-H.; Jin, J.-I.; Lee, S. H.; Kim, Y. K. J. Polym. Sci., Part B:
Polym. Phys. 2008, 46, 2395; (d) Giebink, N. C.; D’Andrade, B. W.; Weaver, M. S.;
Mackenzie, P. B.; Brown, J. J.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2008,
103, 044509; (e) So, F.; Kondakov, D. Adv. Mater. 2010, 22, 3762.
5. (a) Webster, G. R.; Mitchell, W. J.; Burn, P. L.; Thomas, R. K.; Fragneto, G.;
Markham, J. P. J.; Samuel, I. D. W. J. Appl. Phys. 2002, 91, 9066; (b) Mitchell, W.
J.; Burn, P. L.; Thomas, R. K.; Fragneto, G. Appl. Phys. Lett. 2003, 82, 2724; (c)
Mitchell, W. J.; Burn, P. L.; Thomas, R. K.; Fragneto, G.; Markham, J. P. J.; Samuel,
I. D. W. J. Appl. Phys. 2004, 95, 2391; (d) Jukes, P. C.; Martin, S. J.; Higgins, A. M.;
Geoghegan, M.; Jones, R. A. L.; Langridge, S.; Wehrum, A.; Kirchmeyer, S. Adv.
Mater. 2004, 16, 807; (e) Higgins, A. M.; Cadby, A.; Lidzey, D. C.; Dalgliesh, R. M.;
Geoghegan, M.; Jones, R. A. L.; Martin, S. J.; Heriot, S. Y. Adv. Funct. Mater. 2009,
19, 157; (f) Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-
C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, G. Appl. Phys. Lett. 2010,
96, 263302; (g) Cavaye, H.; Smith, A.; James, M.; Nelson, A.; Burn, P. L.; Gentle, I.
R.; Meredith, P. Langmuir 2009, 25, 12800; (h) Smith, A. R. G.; Ruggles, J. L.;
Cavaye, H.; Shaw, P.; Darwish, T. A.; James, M.; Gentle, I. R.; Burn, P. L. Adv.
Funct. Mater. 2011, 21, 2225; (i) Lee, K. H.; Schwenn, P. E.; Smith, A. R. G.;
Cavaye, H.; Shaw, P. E.; James, M.; Kruger, K.; Meredith, P.; Gentle, I. R.; Burn, P.
L. Adv. Mater. 2011, 23, 766; (j) Tong, C. C.; Hwang, K. C. J. Phys. Chem. C 2007,
111, 3490; (k) Abe, T.; Miyazawa, A.; Konno, H.; Kawanishi, Y. Chem. Phys. Lett.
2010, 491, 199; (l) Cavaye, H.; Shaw, P. E.; Smith, A. R. G.; Burn, P. L.; Gentle, I.
R.; James, M.; Lo, S.-C.; Meredith, P. J. Phys. Chem. C 2011, 115, 18366.
6. Hawthorne, S. B.; Miller, D. J.; Aulich, T. R.; Fresenius, Z. Anal. Chem. 1989, 334,
421.
SLD of ꢀ2.6 ꢁ 10ꢂ6 Åꢂ2
.
In conclusion, we have produced relatively large quantities of
deuterated materials typically used in OLEDs using hydrothermal
conditions with Pt/C and Pd/C as catalysts. In the case of BCP, the
availability of two nitrogen atoms which can coordinate to the me-
tal catalyst increases its accessibility and thus enhances the H/D
exchange process. The hydrothermal exchange reaction with insol-
uble TCTA was only achieved by using protonated THF as a co-sol-
vent. The extent of deuteration in each case was estimated using a
combination of ESI-MS, 1H, 2H, and 13C NMR analysis which
showed lower deuteration percentages at sites associated with ste-
ric hindrance and low accessibility for the catalyst. The use of in-
verse gated 13C NMR experiments were particularly useful in
decoupling overlapping 1H resonances from multiple sites, giving
unique assignment of site-specific deuteration levels. These syn-
thetic and characterization results show the ability for these tech-
niques to be used in the deuteration of other conjugated aromatic
heterocycles. Neutron reflectometry measurements indicate
smooth, fully dense molecular films with excellent scattering con-
trast between the protonated and deuterated components.
Acknowledgments
Synthesis of the molecules described here was conducted at the
National Deuteration Facility and was partly supported by the Na-
tional Collaborative Research Infrastructure Strategy—an initiative
of the Australian Government. A.R.G.S. would like to thank the Aus-
tralian Institute of Nuclear Science and Engineering for a postgrad-
uate research award. P.L.B. is a recipient of an Australian Research
Council Federation Fellowship (Project no. FF0668728). We
acknowledge funding from the University of Queensland (Strategic
Initiative-Centre for Organic Photonics & Electronics).
7. (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem. Int. Ed. 2007,
46, 7744; (b) Derdau, V.; Atzrodt, J.; Zimmermann, J.; Kroll, C.; Brückner, F.
Chem. Eur. J. 2009, 15, 10397; (c) Atzrodt, J.; Derdau, V. J. Labelled Compd.
Radiopharm. 2010, 53, 674.
8. (a) Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Org. Lett. 2004, 6, 1485;
(b) Sajiki, H.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Synlett 2005, 1385; (c)
Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K.; Sajiki, H. Heterocycles 2005, 66, 361;
(d) Maegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Synlett 2005,
845; (e) Esaki, H.; Ito, N.; Sakai, S.; Maegawa, T.; Monguchi, Y.; Sajiki, H.
Tetrahedron 2006, 62, 10954; (f) Esaki, H.; Aoki, F.; Umemura, M.; Kato, M.;
Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2007, 13, 4052; (g) Kurita, T.;
Hattori, K.; Seki, S.; Mizumoto, T.; Aoki, F.; Yamad, Y.; Ikawa, K.; Maegawa, T.;
Monguchi, Y.; Sajiki, H. Chem. Eur. J. 2008, 14, 664; (h) Ito, N.; Esaki, H.;
Maesawa, T.; Imamiya, E.; Maegawa, T.; Sajiki, H. Bull. Chem. Soc. Jpn. 2008, 81,
278; (i) Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K.
Tetrahedron Lett. 2005, 46, 6995; (j) Ito, N.; Watahiki, T.; Maesawa, T.;
Maegawa, T.; Sajiki, H. Adv. Synth. Catal. 2006, 348, 1025.
Supplementary data
Supplementary data (synthesis, NMR and MS spectroscopy
characterization and spectra and the neutron reflectometry details)
associated with this article can be found, in the online version, at
9. (a) Jameson, C. J. In Isotopes in the Physical and Biomedical Sciences; Elsevier
Science Publishers: Amsterdam, 1991; Vol. 2, p. 1; (b) Jameson, C. J.; Osten, H. J.
Ann. Rep. NMR Spectrosc. 1986, 17, 1; (c) Jameson, C. J.; Osten, H. J. J. Am. Chem.
Soc. 1985, 107, 4158.
10. Liu, Q.; Lu, J.; Ding, J.; Day, M.; Tao, Y.; Barrios, P.; Stupak, J.; Chan, K.; Li, J.; Chi,
Y. Adv. Funct. Mater. 2007, 17, 1028.
References and notes
11. (a) James, M. A.; Nelson, A.; Brule, J. C.; Schulz, J. Neutron Res. 2006, 14, 91; (b)
James, M.; Nelson, A.; Holt, S. A.; Saerbeck, T.; Hamilton, W. A.; Klose, F. Nucl.
Instrum. Methods Phys. Res. A 2011, 632, 112.
12. (a) Nelson, A. J. Appl. Crystallogr. 2006, 39, 273; (b) Nelson, A. J. Phys.: Conf. Ser.
2010, 251, 012094.
1. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
2. (a) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90,
5048; (b) Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett.
2001, 79, 156; (c) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.;
Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4.