N. Katir, J. P. Majoral, A. El Kadib, A.-M. Caminade, M. Bousmina
SHORT COMMUNICATION
18.1 Hz, 3JH,H = 7.3 Hz, 24 H, CH2-CH2P), 3.30 (br. s, 18 H, CH3-
Conclusions
3
N), 4.02–4.12 (m, 48 H, OCH2-CH3), 4.90 (dt, JP,H = 14.8 Hz,
3JH,H = 7.3 Hz, 24 H, CH2-CH2P), 5.85 (s, 12 H, C4-CH2), 5.90 (s,
New symmetric and asymmetric viologen monomers, di-
mers, and trimers have been shown to be versatile building 36 H, C11-CH2, C13-CH2, C15-CH2), 7.46 (d, 3JH,H = 7.7 Hz, 12 H,
3
H3), 7.69 (d, JH,H = 7.7 Hz, 12 H, H2), 7.74 (s, 18 H, H12, H14,
blocks for the synthesis of a number of polycationic dendri-
mers incorporating linear and (or) cyclic phosphorus units.
In all cases, divergent points of each generation are different
and can be cyclotriphosphazene, thiophosphotrihydrazido,
or di- or trisubstituted benzene linkages. These different
ways of preparation of mixed phosphorus–viologen-con-
taining dendrimers illustrated the potentiality of these
methodologies for the design of new types of dendritic
structures. Several properties and applications of these den-
3
H16), 7.78 (br. s, 6 H, CH=N), 8.46 (d, JH,H = 5.1 Hz, 72 H, H6,
3
H9, H18, H21), 9.04 (d, JH,H = 5.5 Hz, 72 H, H5, H10, H17, H22)
3
ppm. 13C{1H} NMR (101 MHz, CD3CN): δ = 15.67 (d, JP,C
=
5.9 Hz, OCH2-CH3), 26.53 (d, 1JP,C = 140.6 Hz, CH2-CH2P), 31.91
(br. s, CH3-N), 56.61 (CH2-CH2P), 62.39 (d, 2JP,C = 6.4 Hz, OCH2-
CH3), 63.57 (C11-CH2, C13-CH2, C15-CH2), 64.31 (C4-CH2), 127.09
(C2), 127.00, 127.44, 127.53 (C6, C9, C18, C21), 129.81 (C3), 131.77
(C12, C14, C16), 132.39 (C1), 135.00 (C11, C13, C15), 136.45 (br. d,
3JP,C = 14.8 Hz, CH=N), 137.77 (C4), 145.59, 145.89, 146.14 (C5,
dritic structures are under active investigation as is the ex- C10, C17, C22), 150.32, 150.41, 150.55 (C7, C8, C19, C20) ppm.
31P{1H} NMR (162 MHz, CD3CN): δ = 17.29, 23.63 ppm. MS
tension of these methods to the design of dendrimers of
higher generations.
(ESI): m/z = 1809.8 [M – 6PF6]6+
.
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis and characterization of 1a–3a, 4, 5a–9a, 5b–9b, 12,
14, 15, 16a–18a, 16b–18b, 19, 20, 23, and 24.
Experimental Section
13: To a solution of 5b (0.25 g, 0.365 mmol) in acetonitrile (10 mL)
was added a solution of 11 (0.025 g, 0.06 mmol) in acetonitrile
(3 mL). This mixture was stirred overnight. The solvent was re-
Acknowledgments
1
moved in vacuo. An orange solid was obtained (0.25 g, 95%). H
Thanks are due to the Moroccan Foundation for Advanced Sci-
ence, Innovation and Research (Rabat, Morocco) and to Centre
National de la Recherche Scientifique (CNRS) (France) for finan-
cial support.
NMR (300 MHz, CD3CN): δ = 3.29 (s, 18 H, CH3-N), 5.79 (s, 12
3
H, C11-CH2), 5.93 (s, 12 H, C4-CH2), 7.45 (d, JH,H = 8.4 Hz, 12
3
H, H3), 7.68 (d, JH,H = 8.1 Hz, 24 H, H13, H2), 7.72 (br. s, 6 H,
3
CH=N), 8.03 (d, JH,H = 8.4 Hz, 12 H, H12), 8.37–8.43 (m, 24 H,
3
H6, H9), 8.83–8.96 (m, 12 H, H5), 9.00 (d, JH,H = 7.1 Hz, 12 H,
H10), 10.07 (s, 6 H, CHO) ppm. 13C{1H} NMR (75 MHz,
CD3CN): δ = 31.94 (CH3-N), 64.12 (C11-CH2), 64.44 (C4-CH2),
127.12 (C2), 127.47, 127.64, 127.69 (C6, C9), 129.79 (C3), 129.84
(C13), 130.33 (C12), 132.22 (C1), 137.43 (C4, C11), 137.76 (CH=N),
138.48 (C14), 145.52, 145.87 (C5, C10), 150.31, 150.56 (C7, C8),
192.14 (CHO) ppm. 31P{1H} NMR (121 MHz, CD3CN): δ =
[1] a) G. R. Newkome, C. D. Shreiner, Polymer 2008, 49, 1–173; b)
ˇ
P. Niederhafner, M. Reinisˇ, J. Sebestík, J. Jezek, J. Pept. Sci.
ˇ
2008, 14, 556–587; c) A.-M. Caminade, C.-O. Turrin, J.-P. Ma-
joral, Chem. Eur. J. 2008, 14, 7422–7432; d) A.-M. Caminade,
P. Servin, R. Laurent, J.-P. Majoral, Chem. Soc. Rev. 2008, 37,
56–67; e) A.-M. Caminade, A. Hameau, J.-P. Majoral, Chem.
Eur. J. 2009, 15, 9270–9285; f) S. Svenson, Eur. J. Pharm. Bi-
opharm. 2009, 71, 445–462; g) D. Astruc, E. Boisselier, C. T.
Ornelas, Chem. Rev. 2010, 110, 1857–1959; h) A.-M. Camin-
ade, C.-O. Turrin, J.-P. Majoral, New J. Chem. 2010, 34, 1512–
1524; i) A.-M. Caminade, J.-P. Majoral, Chem. Soc. Rev. 2010,
39, 2034–2047; j) G. R. Newkome, C. Shreiner, Chem. Rev.
2010, 110, 6338–6442; k) R. S. Navath, A. R. Menjoge, B.
Wang, R. Romero, S. Kannan, R. M. Kannan, Biomacromolec-
ules 2010, 11, 1544–1563; l) J. M. Oliveira, A. J. Salgado, N.
Sousa, J. F. Mano, R. L. Reis, Prog. Polym. Sci. 2010, 35, 1163–
1194; m) M. Calderón, M. A. Quadir, M. Strumia, R. Haag,
Biochimie 2010, 92, 1242–1251; n) J. Sebestik, P. Niederhafner,
J. Jezek, Amino Acids 2011, 40, 301–370; o) M. A. Mintzer,
M. W. Grinstaff, Chem. Soc. Rev. 2011, 40, 173–190.
18.16 ppm. MS (ESI): m/z = 2056.4 [M – 2PF6]2+. IR (neat): ν =
˜
1695 (C=O), 1637 (C=N) cm–1.
21: To a solution of 19 (0.09 g, 4.98 10–2 mmol) in acetonitrile
(10 mL) was added 11 (0.0034 g, 8.395ϫ10–3 mmol). The mixture
was stirred overnight. The solvent was removed in vacuo to yield
1
(0.90 g, 96%) as an orange solid. H NMR (300 MHz, CD3CN): δ
3
= 3.29 (br. d, JP,H = 8.9 Hz, 18 H, CH3-N), 5.85 (s, 12 H, C4-
CH2), 5.89 (s, 36 H, C11-CH2, C13-CH2, C15-CH2), 5.93 (s, 24 H,
C23-CH2), 7.36–7.51 (m, 12 H, H3), 7.57–7.70 (m, 36 H, H24, H2),
7.69 (br. s, 6 H, CH=N), 7.76 (s, 18 H, H12, H14, H16), 7.84 (d,
3JH,H = 8.5 Hz, 24 H, H25), 8.37–8.50 (m, 72 H, H6, H9, H18, H21),
8.96–9.10 (m, 72 H, H5, H10, H17, H22) ppm. 13C{1H} NMR
(75 MHz, CD3CN): δ = 31.92 (br. d, 2JP,C = 9.6 Hz, CH3-N), 63.57
(C11-CH2, C13-CH2, C15-CH2), 63.73 (C23-CH2), 64.29 (C4-CH2),
113.41 (C26), 118.02 (CN), 127.02 (C2), 127.44, 127.54, 127.64 (C6,
C9, C18, C21), 129.67 (C3), 129.93 (C24), 131.79 (C12, C14, C16),
132.32 (C1), 133.26 (C25), 134.95, 135.03 (C11, C13, C15), 136.20 (br.
[2] W. Sliwa, B. Bachowska, T. Girek, Curr. Org. Chem. 2007, 11,
497–513.
[3] F. Marchioni, M. Venturi, A. Credi, V. Balzani, M. Belohrad-
sky, A. M. Elizarov, H.-R. Tseng, J. F. Stoddart, J. Am. Chem.
Soc. 2004, 126, 568–573.
[4] a) C. A. Schalley, C. Verhaelen, F.-G. Klärner, U. Hahn, F.
Vögtle, Angew. Chem. 2005, 117, 481–485; Angew. Chem. Int.
Ed. 2005, 44, 477–480; b) V. Balzani, H. Bandmann, P. Ceroni,
C. Giansante, U. Hahn, F.-G. Klärner, U. Müller, W. M.
Müller, C. Verhaelen, V. Vicinelli, F. Vögtle, J. Am. Chem. Soc.
2006, 128, 637–648.
3
d, JP,C = 13.5 Hz, CH=N), 137.52 (C23), 137.80 (C4), 145.59,
145.86, 145.93 (C5, C10, C17, C22), 150.31, 150.43, 150.51, 150.65
(C7, C8, C19, C20) ppm. 31P{1H} NMR (121 MHz, CD3CN): δ =
17.06 ppm. MS (ESI): m/z = 1711.9 [M – 6PF6]6+. IR (neat): ν =
˜
2233 (CN), 1637 (C=N) cm–1.
[5] S. Asaftei, E. De Clercq, J. Med. Chem. 2010, 53, 3480–3488.
[6] a) T. H. Ghaddar, J. F. Wishart, D. W. Thompson, J. K. White-
sell, M. A. Fox, J. Am. Chem. Soc. 2002, 124, 8285–8289; b)
W. Wang, A. E. Kaifer, Angew. Chem. 2006, 118, 7200–7204;
Angew. Chem. Int. Ed. 2006, 45, 7042–7046; c) P. Bhattacharya,
A. E. Kaifer, J. Org. Chem. 2008, 73, 5693–5698.
22: To a solution of 20 (0.10 g, 5.25 10–2 mmol) in acetonitrile
(20 mL) was added 11 (0.0035 g, 8.64ϫ10–3 mmol). The mixture
was stirred overnight. The solvent was removed in vacuo to yield 22
(0.098 g, 95%) as an orange solid. 1H NMR (400 MHz, CD3CN): δ
3
2
= 1.27 (t, JH,H = 6.0 Hz, 72 H, OCH2-CH3), 2.59 (dt, JP,H
=
272
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 269–273