M.-H. Li et al. / European Journal of Medicinal Chemistry 47 (2012) 560e572
571
[13] R. Shukla, T.P. Thomas, J. Peters, A. Kotlyar, A. Myc, J.R. Baker Jr., Tumor
angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates,
Chem. Commun. (2005) 5739e5741.
[40] S. Rijnboutt, G. Jansen, G. Posthuma, J.B. Hynes, J.H. Schornagel, G.J. Strous,
Endocytosis of GPI-linked membrane folate receptor-a, J. Cell Biol. 132 (1996)
35e47.
[14] K. Temming, M. Lacombe, R.Q.J. Schaapveld, L. Orfi, G. Kéri, K. Poelstra,
G. Molema, R.J. Kok, Rational design of RGD-albumin conjugates for targeted
delivery of the VEGF-R kinase inhibitor PTK787 to angiogenic endothelium,
ChemMedChem. 1 (2006) 1200e1203.
[15] Y. Chen, C.A. Foss, Y. Byun, S. Nimmagadda, M. Pullambhatla, J.J. Fox,
M. Castanares, S.E. Lupold, J.W. Babich, R.C. Mease, M.G. Pomper, Radio-
halogenated prostate-specific membrane antigen (PSMA)-based ureas as
imaging agents for prostate cancer, J. Med. Chem. 51 (2008) 7933e7943.
[16] R. Shukla, T.P. Thomas, A.M. Desai, A. Kotlyar, S.J. Park, J.R. Baker Jr., HER2
specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb,
Nanotechnology 19 (2008) 295102.
[41] J.N. Waddell, D.G. Mullen, B.G. Orr, M.M. Banaszak Holl, L.M. Sander, Origin of
broad polydispersion in functionalized dendrimers and its effects on cancer-
cell binding affinity, Phys. Rev. E 82 (2010) 036108.
[42] N.A. Licata, A.V. Tkachenko, Kinetic limitations of cooperativity-based drug
delivery systems, Phys. Rev. Lett. 100 (2008) 158102.
[43] E. Arranz-Plaza, A.S. Tracy, A. Siriwardena, J.M. Pierce, G.J. Boons, High-avidity,
low-affinity multivalent interactions and the block to polyspermy in Xenopus
laevis, J. Am. Chem. Soc. 124 (2002) 13035e13046.
[44] P. Adler, S.J. Wood, Y.C. Lee, R.T. Lee, W.A. Petri Jr., R.L. Schnaar, High affinity
binding of the Entamoeba histolytica lectin to polyvalent N-acetylgalactosa-
minides, J. Biol. Chem. 270 (1995) 5164e5171.
[17] Z.M. Qian, H. Li, H. Sun, K. Ho, Targeted drug delivery via the transferrin
receptor-mediated endocytosis Pathway, Pharmacol. Rev. 54 (2002)
561e587.
[45] J.E. Gestwicki, C.W. Cairo, D.A. Mann, R.M. Owen, L.L. Kiessling, Selective
immobilization of multivalent ligands for surface plasmon resonance and
fluorescence microscopy, Anal. Biochem. 305 (2002) 149e155.
[18] T.P. Thomas, R. Shukla, A. Kotlyar, B. Liang, J.Y. Ye, T.B. Norris, J.R. Baker Jr.,
Dendrimer-Epidermal growth factor conjugate Displays Superagonist activity,
Biomacromolecules 9 (2008) 603e609.
[19] S. Raha, T. Paunesku, G. Woloschak, Peptide-mediated cancer targeting of
nanoconjugates, WIREs: Nanomed. Nanobiotech (2010) n/a-n/a.
[20] S. Hong, P.R. Leroueil, I.J. Majoros, B.G. Orr, J.R. Baker Jr., M.M. Banaszak Holl,
[46] J. Rao, L. Yan, B. Xu, G.M. Whitesides, Using surface plasmon resonance to
study the binding of vancomycin and its dimer to self-assembled monolayers
presenting d-Ala-d-Ala, J. Am. Chem. Soc. 121 (1999) 2629e2630.
[47] C. Tassa, J.L. Duffner, T.A. Lewis, R. Weissleder, S.L. Schreiber, A.N. Koehler,
S.Y. Shaw, Binding affinity and kinetic analysis of targeted small molecule-
modified nanoparticles, Bioconj. Chem. 21 (2010) 14e19.
The binding avidity of
delivery platform, Chem. Biol. 14 (2007) 107e115.
[21] Y.C. Lee, R.T. Lee, Carbohydrate-protein interactions: basis of glycobiology,
Acc. Chem. Res. 28 (1995) 321e327.
a
nanoparticle-based multivalent targeted drug
[48] H. Nakajima, N. Kiyokawa, Y.U. Katagiri, T. Taguchi, T. Suzuki, T. Sekino,
K. Mimori, T. Ebata, M. Saito, H. Nakao, T. Takeda, J. Fujimoto, Kinetic analysis
of binding between Shiga Toxin and receptor glycolipid Gb3Cer by surface
plasmon resonance, J. Biol. Chem. 276 (2001) 42915e42922.
[22] L.L. Kiessling, J.E. Gestwicki, L.E. Strong, Synthetic multivalent ligands in the
[49] K. Hidari, S. Shimada, Y. Suzuki, T. Suzuki, Binding kinetics of influenza viruses
to sialic acid-containing carbohydrates, Glycoconj. J. 24 (2007) 583e590.
[50] D.A. Mann, M. Kanai, D.J. Maly, L.L. Kiessling, Probing low affinity and multi-
valent interactions with surface plasmon resonance: ligands for concanavalin
A, J. Am. Chem. Soc. 120 (1998) 10575e10582.
[51] R.D. Kensinger, B.C. Yowler, A.J. Benesi, C.-L. Schengrund, Synthesis of novel,
multivalent glycodendrimers as ligands for HIV-1 gp120, Bioconj. Chem. 15
(2004) 349e358.
[52] T.P. Thomas, I.J. Majoros, A. Kotlyar, J.F. Kukowska-Latallo, A. Bielinska, A. Myc,
J.R. Baker Jr., Targeting and inhibition of cell growth by an engineered
dendritic nanodevice, J. Med. Chem. 48 (2005) 3729e3735.
[53] S.K. Choi, T. Thomas, M. Li, A. Kotlyar, A. Desai, J.R. Baker Jr., Light-controlled
release of caged doxorubicin from folate receptor-targeting PAMAM den-
drimer nanoconjugate, Chem. Commun. 46 (2010) 2632e2634.
[54] R.J. Lee, S. Wang, P.S. Low, Measurement of endosome pH following folate
receptor-mediated endocytosis, Biochim. Biophys. Acta (BBA). Mol. Cell Res.
(1996) 237e242.
[55] J. Yang, H. Chen, I.R. Vlahov, J.-X. Cheng, P.S. Low, Characterization of the pH of
folate receptor-containing endosomes and the rate of Hydrolysis of inter-
nalized acid-Labile folate-drug conjugates, J. Pharmacol. Exp. Ther. 321 (2007)
462e468.
[56] V. Cody, J.R. Luft, W. Pangborn, Understanding the role of Leu22 variants in
methotrexate resistance: comparison of wild-type and Leu22Arg variant
mouse and human dihydrofolate reductase ternary crystal complexes with
methotrexate and NADPH, Acta Crystallogr. D Biol. Crystallogr. 61 (Pt 2)
(2005) 147e155.
exploration of cell-surface interactions, Curr. Opin. Chem. Biol.
4 (2000)
696e703.
[23] M. Mammen, S.K. Choi, G.M. Whitesides, Polyvalent interactions in biological
systems: implications for design and use of multivalent ligands and inhibitors,
Angew. Chem. Int. Ed. 37 (1998) 2755.
[24] R. Roy, Syntheses and some applications of chemically defined multivalent
glycoconjugates, Curr. Opin. Struct. Biol. 6 (1996) 692e702.
[25] I. Majoros, J. BakerJr (Eds.), Dendrimer-Based Nanomedicine, Pan Stanford,
Hackensack, NJ, 2008.
[26] Y. Choi, T. Thomas, A. Kotlyar, M.T. Islam, J.R. Baker Jr., Synthesis and func-
tional evaluation of DNA-assembled polyamidoamine dendrimer clusters for
cancer cell-specific targeting, Chem. Biol. 12 (2005) 35e43.
[27] Y. Lu, P.S. Low, Folate-mediated delivery of macromolecular anticancer ther-
apeutic agents, Adv. Drug Del. Rev. 54 (2002) 675e693.
[28] D.G. Mullen, A.M. Desai, J.N. Waddell, X.-M. Cheng, C.V. Kelly, D.Q. McNerny,
I.N.J. Majoros, J.R. Baker Jr., L.M. Sander, B.G. Orr, M.M. Banaszak Holl, The
implications of stochastic synthesis for the conjugation of functional groups to
nanoparticles, Bioconj. Chem. 19 (2008) 1748e1752.
[29] I.J. Majoros, T.P. Thomas, C.B. Mehta, J.R. Baker Jr., Poly(amidoamine)
dendrimer-based multifunctional engineered nanodevice for cancer therapy,
J. Med. Chem. 48 (2005) 5892e5899.
[30] D. Mullen, E. Borgmeier, A. Desai, M. van Dongen, M. Barash, X.m. Cheng,
J.R. Baker Jr., M. Banaszak Holl, Isolation and characterization of dendrimer
with precise numbers of functional Groups, Chem. Eur. J. 16 (2010)
10675e10678.
[31] I.F. Hakem, A.M. Leech, J.D. Johnson, S.J. Donahue, J.P. Walker, M.R. Bockstaller,
Understanding ligand distributions in modified particle and particle like
systems, J. Am. Chem. Soc. 132 (2010) 16593e16598.
[32] D.G. Mullen, M. Fang, A. Desai, J.R. Baker Jr., B.G. Orr, M.M. Banaszak Holl,
A quantitative assessment of nanoparticle-ligand distributions: implications
for targeted drug and imaging delivery in dendrimer conjugates, ACS Nano 4
(2010) 657e670.
[33] F. Gu, L. Zhang, B.A. Teply, N. Mann, A. Wang, A.F. Radovic-Moreno, R. Langer,
O.C. Farokhzad, Precise engineering of targeted nanoparticles by using self-
assembled biointegrated block copolymers, Proc. Natl. Acad. Sci. USA 105
(2008) 2586e2591.
[34] Y. Zhu, H. Qian, A. Bethany Drake, R. Jin, Atomically precise Au25SR18 nano-
particles as catalysts for the selective hydrogenation of alpha, beta-
unsaturated ketones and aldehydes13, Angew. Chem. Intl. Ed. 49 (2010)
1295e1298.
[57] G. Wu, R.F. Barth, W. Yang, S. Kawabata, L. Zhang, K. Green-Church, Targeted
delivery of methotrexate to epidermal growth factor receptor-positive brain
tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates, Mol.
Cancer Ther. 5 (2006) 52e59.
[58] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan,
M. Karplus, Charmm: a program for macromolecular energy, minimization,
and dynamics calculations, J. Comput. Chem. 4 (1983) 187e217.
[59] A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field,
S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera,
F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom,
W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub,
M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical
potential for molecular modeling and dynamics studies of proteins, J. Phys.
Chem. B. 102 (1998) 3586e3616.
[60] J.M. Whiteley, G.B. Henderson, A. Russell, P. Singh, E.M. Zevely, The isolation of
dihydrofolate reductases by affinity chromatography on folate-Sepharose,
Anal. Biochem. 79 (1977) 42e51.
[35] H. Qian, R. Jin, Controlling nanoparticles with atomic precision: the case of
Au144(SCH2CH2Ph)60, Nano Lett. 9 (2009) 4083e4087.
[36] E.A. Ercikan-Abali, M.C. Waltham, A.P. Dicker, B.I. Schweitzer, H. Gritsman,
D. Banerjee, J.R. Bertino, Variants of human dihydrofolate reductase with
substitutions at leucine-22: effect on catalytic and inhibitor binding proper-
ties, Mol. Pharmacol. 49 (1996) 430e437.
[37] J. Worm, A.F. Kirkin, K.N. Dzhandzhugazyan, P. Guldberg, Methylation-
dependent silencing of the reduced folate carrier gene in inherently
methotrexate-resistant human breast cancer cells, J. Biol. Chem. 276 (2001)
39990e40000.
[61] G.R. Gapski, J.M. Whiteley, J.I. Rader, P.L. Cramer, G.B. Hendersen, V. Neef,
F.M. Huennekens, Synthesis of
a fluorescent derivative of amethopterin,
J. Med. Chem. 18 (2002) 526e528.
[62] A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A.K. Patri,
T. Thomas, J. Mulé, J.R. Baker Jr., Design and function of a dendrimer-based
therapeutic nanodevice targeted to tumor cells through the folate receptor,
Pharm. Res. 19 (2002) 1310e1316.
[63] T.P. Thomas, J.R. Kukowska-Latallo, Biological application of PAMAM dendrimer
nanodevices in vitro and in vivo, in: I. Majoros, J.R. Baker Jr (Eds.), Dendrimer-
Based Nanomedicine, Pan Stanford, Hackensack, NJ, 2008, pp. 175e207.
[64] A. Rosowsky, R.A. Forsch, C.S. Yu, H. Lazarus, G.P. Beardsley, Methotrexate
analogs. 21. Divergent influence of alkyl chain length on the dihydrofolate
reductase affinity and cytotoxicity of methotrexate monoesters, J. Med. Chem.
27 (1984) 605e609.
[38] B.A. Kamen, A. Capdevila, Receptor-mediated folate accumulation is regu-
lated by the cellular folate content, Proc. Natl. Acad. Sci. USA 83 (1986)
5983e5987.
[39] S.G. Nandini-Kishore, W.A. Frazier, [3H]Methotrexate as a ligand for the folate
receptor of Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 78 (1981)
7299e7303.