C.-H. Cheng et al.
FULL PAPERS
lation of compound 3D and its conversion into product 3a
strongly supports the proposed mechanism in Scheme 5.
Acknowledgements
We thank the National Science Council (NSC-99-2119-M-007-010) of the
Republic of China for their support of this research.
Conclusions
We have successfully developed a convenient and efficient
method for the synthesis of highly substituted isoquinolines
and isoquinolinium salts by the nickel-catalyzed annulation
reaction of ketoximes and ketimines with various alkynes.
Highly regioselective substituted isoquinolines were pre-
pared in good to moderate yields. Further studies toward
the synthesis of isoquinoline-N-oxide derivatives and appli-
cations of this methodology in natural product synthesis are
in progress.
[1] a) The Chemistry of Heterocyclic Compounds: Isoquinolines, Vol. 38
(Eds.: G. M. Coppola, H. F. Schuster), Wiley, New York, 1981,
Part 3; b) G. Timꢁri, T. Soꢂs, G. Hajꢂs, A. Messmer, J. Nacsa, J.
Molnꢁr, Bio. Org. Med. Chem. Lett. 1996, 6, 2831; c) M. Chrzanow-
[2] Y. Kashiwada, A. Aoshima, Y. Ikeshiro, Y. P. Chen, H. Furukawa,
M. Itoigawa, T. Fujioka, K. Mihashi, L. M. Cosentino, S. L. Morris-
[3] F. Dzierszinski, A. Coppin, M. Mortuaire, E. Dewailly, C. Slomian-
[4] A. Graulich, S. Dilly, A. Farce, J. Scuvꢃe-Moreau, O. Waroux, C.
[5] Y. G. Gao, R. Zong, A. Campbell, N. S. Kula, R. J. Baldessarini, J. L.
Experimental Section
General procedure for the synthesis of isoquinolines 3
[6] a) C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown,
A sealed tube (15 mL volume) initially fitted with a septum containing
[NiACHTUNGTRENNUNG(PPh3)2Br2] (3.0 mol%), Zn (0.70 mmol), ketoxime 1 (0.20 mmol),
and alkyne 2 (0.40 mmol) was evacuated and purged with N2 three times.
Freshly distilled CH3CN (0.50 mL) and THF (0.50 mL) were added and
the solution was stirred at 808C for 15 h. The mixture was filtered
through a Celite and silica-gel pad and the system was then washed with
MeOH (50 mL). The combined filtrate was concentrated, and the residue
was purified by column chromatography on silica gel (hexanes/EtOAc
9:1) to give the corresponding pure isoquinoline product.
[7] a) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamata-
ni, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M.
shi, K. Watanabe, U.S. Patent 2004053071A1, 2004; c) J. Y. Lee, Y. J.
Choi, J. H. Kwon, H. K. Chung, U.S. Patent 20050112401A1, 2005;
d) J. C. Deaton, T. K. Hatwar, D. Y. Kondakov, C. J. Brown, U.S.
Patent 20050123791A1, 2005; e) J. C. Deaton, T. K. Hatwar, D. Y.
Kondakov, U.S. Patent 20050112401A1, 2005; f) S.-J. Liu, Q. Zhao,
R.-F. Chen, Y. Deng, Q.-L. Fan, F.-Y. Li, L.-H. Wang, C.-H. Huang,
[8] For Bischler-Napieralski examples, see: a) A. Bischler, B. Napieral-
mooka, T. Narioka, S. Noguchi, T. Saito, A. Ishikawa, E. Yamazaki,
773. For Pomeranz-Fritsch examples, see: d) C. Pomeranz, Monatsh.
Pictet, T. Spengler, Chem. Ber. 1911, 44, 2030.
[9] a) D. Fischer, H. Tomeba, N. K. Pahadi N. T. Patil, Y. Yamamoto,
351, 85; f) T. Fukutani, N. Umeda, K. Hirano, T. Satoh, M. Miura,
1-Methyl-3,4-diphenylisoquinoline (3a)
White solid; m.p. 157–1588C; 1H NMR (400 MHz, CDCl3): d=8.20–8.18
(m, 1H), 7.66–7.63 (m, 1H), 7.36–7.29 (m, 5H), 7.22–7.13 (m, 5H),
3.07 ppm (s, 3H). 13C NMR (100 MHz, CDCl3): d=157.7, 149.4, 140.9,
137.5, 135.9, 131.3, 130.2, 139.9, 129.1, 128.1, 127.5, 127.1, 126.9, 126.5,
126.2, 126.1, 125.5, 22.7 ppm; HRMS (EI+): calcd for C22H17N: 295.1361;
found: 295.1356. IR: n˜ =3062, 1612, 1550, 1504, 1389 cmÀ1
.
General procedure for the synthesis of isoquinolinium salts 5
A sealed tube (15 mL volume) initially fitted with a septum containing
[NiACHTUNGTRENNUNG(PPh3)2Br2] (5.0 mol%), Zn (0.1 mmol), ketimine 4 (0.20 mmol), and
alkyne 2 (0.20 mmol) was evacuated and purged with nitrogen gas three
times. Freshly distilled THF (3.0 mL) was added and the solution was
stirred at 708C for 2 h. The mixture was diluted with dichloromethane
(ca. 15 mL), filtered through a Celite and silica-gel pad, and washed with
MeOH (50 mL). The filtrate was concentrated, and the residue was puri-
fied by column chromatography on silica gel (EtOAc/acetone 1:2) as
eluent to give the corresponding pure isoquinoline salt.
2-(4-Methoxyphenyl)-1-methyl-3,4-diphenylisoquinolinium iodide (5a)
Yellow solid; m.p. 238.58C; 1H NMR (400 MHz, CD2Cl2): d=3.18 (s,
3H), 3.75 (s, 3H), 6.89 (d, J=8.8 Hz, 2H), 7.02–7.03 (m, 3H), 7.18–7.20
(m, 2H), 7.28–7.32 (m, 5H), 7.48 (d, J=8.8 Hz, 2H), 7.71 (d, J=8.0 Hz,
1H), 8.05–8.08 (m, 2H), 8.73 ppm (d, J=8.0 Hz, 1H); 13C NMR
(100 MHz, CD2Cl2): d=1.55, 35.98, 95.72, 107.41, 107.57, 107.85, 108.51,
108.72, 109.04, 109.99, 110.85, 111.66, 111.77, 112.66, 113.15, 114.15,
117.15, 117.38, 118.16, 125.45, 140.53, 141.47 ppm; HRMS (FAB): calcd
for C29H24NO: 402.1852; found: 402.1859; IR: n˜ =1257, 1445, 1504, 1612,
2938, 2962 cmÀ1
.
[12] a) D. K. Rayabarapu, T. Sambaiah, C.-H. Cheng, Angew. Chem.
312
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Asian J. 2012, 7, 306 – 313