methodology when preserving the dynamic nature of the
self-organized structure characteristic of LCs.
Beam time at PF-KEK provided by Program 2010G533
is acknowledged. This work was supported in part by Grant-
in-Aid for Scientific Research (C) 18550121 from Japan
Society for the Promotion of Science (JSPS).
Notes and references
1 (a) I. W. Hamley, Introduction to Soft Matter; Polymer, Colloids,
Amphiphiles and Liquid Crystals, John-Wiley, Chichester, UK, 2000;
(b) C. Tschierske, Annu. Rep. Prog. Chem., Sect. C, 2001, 97,
191–267 and references therein; (c) Handbook of Liquid Crystals,
ed. D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess and V. Vill,
Wiley-VCH, Weinheim, Germany, 1998.
2 (a) T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int.
Ed., 2006, 45, 38–68; (b) Y. Sagara and T. Kato, Angew. Chem., Int.
Ed., 2008, 47, 5175–5178.
3 Bicontinuous Liquid Crystals; Surfactant Science Series Vol. 127, ed.
M. L. Lynch and P. T. Spicer, CRC Press, Taylor & Francis Group,
Boca Raton, 2005.
4 (a) S. Diele and P. Goring, Handbook of Liquid Crystals, vol. 2B,
¨
Fig. 4 (a) XRD patterns of the mixture of 1 with diacrylate and
photo-initiator at 45.0, 150.0, 180.1, 200.0, and 215.0 1C on the second
heating after photopolymerization at around 142 1C and subsequent
cooling down to room temperature. (b) Fraction of the Cubbi phase
evaluated from the XRD pattern as a function of temperature.
1998, pp. 887–900; (b) S. Diele, Curr. Opin. Colloid Interface Sci.,
2002, 7, 333–342; (c) S. Kutsumizu, Curr. Opin. Solid State Mater.
´
Sci., 2002, 6, 537–543; (d) M. Imperor-Clerc, Curr. Opin. Colloid
Interface Sci., 2005, 9, 370–376.
5 (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710–712; (b) Y.-S. Lee, J.-Z. Yang,
T. M. Sisson, D. A. Frankel, J. T. Gleeson, E. Aksay, S. L. Keller,
S. M. Gruner and D. F. O’Brien, J. Am. Chem. Soc., 1995, 117,
5573–5578; (c) B. A. Pindzola, J. Jin and D. L. Gin, J. Am. Chem.
Soc., 2003, 125, 2940–2949; (d) M. Zhou, P. R. Nemade, X. Lu,
X. Zeng, E. S. Hatakeyama, R. D. Noble and D. L. Gin, J. Am.
Chem. Soc., 2007, 129, 9574–9575; (e) T. Ichikawa, M. Yoshio,
A. Hamasaki, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc.,
2007, 129, 10662–10663; (f) R. L. Kerr, S. A. Miller,
R. K. Shoemaker, B. J. Elliott and D. L. Gin, J. Am. Chem. Soc.,
2009, 131, 15972–15973; (g) M. Akhtarul Alam, J. Motoyanagi,
Y. Yamamoto, T. Fukushima, J. Kim, K. Kato, M. Takata,
A. Saeki, S. Seki, S. Tagawa and T. Aida, J. Am. Chem. Soc.,
2009, 131, 17722–17723; (h) T. Ichikawa, M. Yoshio, A. Hamasaki,
J. Kagimoto, H. Ohno and T. Kato, J. Am. Chem. Soc., 2011, 133,
2163–2169; (i) J.-M. Suisse, H. Mori, H. Monobe, S. Kutsumizu and
Y. Shimizu, Soft Matter, 2011, 7, 11086–11088.
6 (a) H. Schubert, J. Hauschild, D. Demus and S. Hoffmann, Z.
Chem., 2010, 18, 256; (b) D. Demus, A. Gloza, H. Hartung,
A. Hauser, I. Rapthel and A. Wiegeleben, Cryst. Res. Technol.,
1981, 16, 1445–1451; (c) H. Mori, S. Kutsumizu, T. Ito,
M. Fukatami, K. Saito, K. Sakajiri and K. Moriya, Chem. Lett.,
2006, 35, 362–363; (d) S. Kutsumizu, H. Mori, M. Fukatami and
K. Saito, J. Appl. Crystallogr., 2007, 40, s279–s282;
(e) S. Kutsumizu, H. Mori, M. Fukatami, S. Naito, K. Sakajiri
and K. Saito, Chem. Mater., 2008, 20, 3675–3687; (f) K. Ozawa,
Y. Yamamura, S. Yasuzuka, H. Mori, S. Kutsumizu and K. Saito,
J. Phys. Chem. B, 2008, 112, 12179–12181.
The relatively broad peaks clearly come from the crosslinking
inhomogeneity mentioned above. Increasing the temperature
further increases gradually the fraction of a broad halo at around
2.4 nmꢀ1, attributable to thermal fluctuation of the Cubbi
structure. The percentage of the halo increases beyond 160 1C,
suggesting partial melting of the Cubbi lattice, which corresponds
to the above-mentioned DSC peak. However, very surprisingly,
the (211) and (220) reflections of the Ia3d-Cubbi lattice still
remained at the highest temperature examined (215 1C), although
becoming quite weak.
An important point is that this stabilization of the Ia3d-Cubbi
LC structure is achieved in the presence of the terminal
CQC bond of compound 1, although it is known that the
reactivity of the CQC bond for photopolymerization is quite
low. The same type of photopolymerization was performed for
the mixture of BABH-10 with the similar molar ratios of
diacrylate and photo-initiator, but failed in preserving the Cubbi
structure, showing a macrophase-separation (Fig. S8, ESIw).
This demonstrates that the terminal CQC bond of compound
1 plays a crucial role in preventing macrophase-separation,
although the contribution to the network formation is partial
(estimated as B5%, see ESIw) and the network in the Ia3d-type
TPMS region is mainly produced from the bi-functional linkers.
In conclusion, in this communication, partial crosslinking of
the terminal alkyl tails of compound 1 with bi-functional linkers
has enabled the formation of the Cubbi LC phase in a very broad
range of temperature of more than 100 1C. This success demon-
strates that the concept of partial crosslinking can be a useful
7 S. M. Kelly, Liq. Cryst., 1996, 20, 493–515 and references therein.
8 (a) K. Saito, A. Sato and M. Sorai, Liq. Cryst., 1998, 25, 525–530;
(b) K. Saito, T. Shinhara and M. Sorai, Liq. Cryst., 2000, 27,
1555–1559; (c) S. Kutsumizu, K. Morita, S. Yano and S. Nojima,
Liq. Cryst., 2002, 29, 1459–1468; (d) K. Saito, T. Shinhara,
T. Nakamoto, S. Kutsumizu, S. Yano and M. Sorai, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2002, 65, 031719; (e) K. Saito
and M. Sorai, Chem. Phys. Lett., 2002, 366, 56–61; (f) M. Sorai and
K. Saito, Chem. Rec., 2003, 3, 29–39.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2225–2227 2227