10.1002/anie.201901933
Angewandte Chemie International Edition
COMMUNICATION
resulting from the benzaldehyde moiety implies the successful
chain extension employing monomer 2 and the option for further
chain growth. Broad singlets at 11.06 and 10.84 ppm (a)
additionally confirm the formation of hydrazonic anhydride and
hydrazide after conducting the NICAL reaction. The introduction
of pyrenes into the backbone of the sequence-defined oligomers
can be verified by proton resonances ranging from 8.80 to
7.50 ppm (b). Resonances detected between 5.60-4.90 (d) and
3.50-2.50 ppm (e) indicate successful formation of the
tetrahydronaphthalene structure formed by DA cycloaddition
(detailed resonance assignments can be found in the SI, refer to
Figure S52 and S55).
evolution of molar mass obtained via SEC, proton NMR, recorded
mass spectra and the conformity of recorded and calculated
isotopic pattern underpin the precision nature of the
macromolecule, with monodisperse character and sequence
definition. Thus, the efficiency of our λ-orthogonal photochemical
protection group free avenue has been established.
Acknowledgements
C.B.-K. is grateful to the German Research Council (DFG) for
funding the current study in the context of the SFB 1176 (project
A3). C.B.-K. additionally acknowledges the Australian Research
Council (ARC) for a Laureate Fellowship underpinning his
photochemical research program as well as key support from the
Queensland University of Technology (QUT).
b
b
c
c
e
d
a
d
d
a
Conflict of Interest: The authors declare no conflict of interest.
b
CHCl3
Keywords: photochemistry • cycloaddition • sequence-defined
macromolecules • sequence-definition • sequence control
[1]
a) J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev.
Mater. 2016, 16024; b) Y. Hibi, M. Ouchi, M. Sawamoto, Nat.
Commun. 2016, 7, 11064; c) B. V. K. J. Schmidt, C. Barner-Kowollik,
Nat. Chem. 2013, 5, 990-992; d) M. Porel, D. N. Thornlow, N. N.
Phan, C. A. Alabi, Nat. Chem. 2016, 8, 590-596; e) A. Burel, C.
Carapito, J.-F. Lutz, L. Charles, Macromolecules 2017, 50, 8290-
8296; f) J.-F. Lutz, Nat. Chem. 2010, 2, 84-85; g) J.-F. Lutz, M.
Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149; h) S.
Martens, A. Landuyt, P. Espeel, B. Devreese, P. Dawyndt, F. Du
Prez, Nat. Commun. 2018, 9, 4451; i) D. Karamessini, B. E. Petit,
M. Bouquey, L. Charles, J.-F. Lutz, Adv. Funct. Mater. 2017, 27,
1604595; j) J. W. Grate, K.-F. Mo, M. D. Daily, Angew. Chem. Int.
Ed. 2016, 55, 3925-3930; k) S. C. Solleder, D. Zengel, K. S. Wetzel,
M. A. R. Meier, Angew. Chem. Int. Ed. 2016, 55, 1204-1207; l) S.
Martens, J. O. Holloway, F. E. Du Prez, Macromol. Rapid Commun.
2017, 38, 1700469.
Backbone
b
d
c
a
e
[2]
a) S. C. Solleder, S. Martens, P. Espeel, F. Du Prez, M. A. R. Meier,
Chem. Eur. J. 2017, 23, 13906-13909; b) S. Martens, J. Van den
Begin, A. Madder, F. E. Du Prez, P. Espeel, J. Am. Chem. Soc. 2016,
138, 14182-14185; c) W. Konrad, F. R. Bloesser, K. S. Wetzel, A.
C. Boukis, M. A. R. Meier, C. Barner-Kowollik, Chem. Eur. J. 2018,
24, 3413-3419; d) J. Xu, C. Fu, S. Shanmugam, C. J. Hawker, G.
Moad, C. Boyer, Angew. Chem. Int. Ed. 2017, 56, 8376-8383; e) S.
C. Solleder, R. V. Schneider, K. S. Wetzel, A. C. Boukis, M. A. R.
Meier, Macromol. Rapid Commun. 2017, 38, 1600711; f) S. Wang,
Y. Tao, J. Wang, Y. Tao, X. Wang, Chem. Sci. 2019, 10, 1531-1538;
g) Z. Huang, J. Zhao, Z. Wang, F. Meng, K. Ding, X. Pan, N. Zhou,
X. Li, Z. Zhang, X. Zhu, Angew. Chem. Int. Ed. 2017, 56, 13612-
13617; h) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev.
2001, 101, 3219-3232; i) E. Uhlmann, A. Peyman, G. Breipohl, D.
W. Will, Angew. Chem. Int. Ed. 1998, 37, 2796-2823; j) R. J. Simon,
R. S. Kania, R. N. Zuckermann, V. D. Huebner, D. A. Jewell, S.
Banville, S. Ng, L. Wang, S. Rosenberg, C. K. Marlowe, PNAS 1992,
89, 9367-9371; k) J. K. Young, J. C. Nelson, J. S. Moore, J. Am.
Chem. Soc. 1994, 116, 10841-10842; l) M. Fischer, F. Vögtle,
Angew. Chem. Int. Ed. 1999, 38, 884-905; m) J. Frechet, Science
1994, 263, 1710-1715.
12
10
8
6
4
2
0
/ ppm
Figure 2. 1H-NMR spectrum of the obtained decamer 3e recorded in CDCl3 at
400 MHz. Characteristic signals are highlighted in colored frames and refer to
the depicted structure.
In summary, we pioneer a photochemical protocol carried out
in a λ-orthogonal fashion and thus avoiding protection chemistry
for the synthesis of monodisperse precision sequence-defined
macromolecules with a molecular weight up to 6257.10 g mol-1. A
symmetrical bisfunctional carboxylic acid was chosen as a core
unit enabling bidirectional chain growth and thus providing a
significant increase of molecular weight per chain extension step.
Thus, symmetrical sequence-defined molecules were obtained
using a monomer unit carrying two photosensitive groups as key
molecule, which can be selectively activated for chain extension
by exposure to UV light at disparate wavelengths without
protecting groups. Consecutive chain growth employing a
complementary monomer led to the desired symmetric sequence-
defined macromolecules in an iterative approach. Successful
formation of the macromolecules was evidenced by in depth
characterization employing SEC, ESI-MS and NMR. The
[3]
[4]
a) T. T. Trinh, C. Laure, J.-F. Lutz, Macromol. Chem. Phys. 2015,
216, 1498-1506; b) J. J. Haven, J. A. De Neve, T. Junkers, ACS
Macro Lett. 2017, 6, 743-747; c) J. Vandenbergh, G. Reekmans, P.
Adriaensens, T. Junkers, Chem. Sci. 2015, 6, 5753-5761.
a) J. C. Barnes, D. J. C. Ehrlich, A. X. Gao, F. A. Leibfarth, Y. Jiang,
E. Zhou, T. F. Jamison, J. A. Johnson, Nat. Chem. 2015, 7, 810-
815; b) F. A. Leibfarth, J. A. Johnson, T. F. Jamison, PNAS 2015,
112, 10617-10622; c) A. C. Wicker, F. A. Leibfarth, T. F. Jamison,
Polym. Chem. 2017, 8, 5786-5794.
This article is protected by copyright. All rights reserved.