New Approach to [FeFe]-Hydrogenase Models
Ph) ppm. 13C{1H} NMR (400 MHz, CDCl3): δ = 93.9 (SCS),
123.8, 126.3, 127.0,129.3, 132.9, 134.3, 137.0 (2 Ph), 207.0, 208.1
[6]
[7]
a) W. Lubitz, E. Reijerse, M. van Gastel, Chem. Rev. 2007, 107,
4331–4365; b) C. Tard, C. J. Pickett, Chem. Rev. 2009, 109,
2245–2274.
M. Y. Darensbourg, E. J. Lyon, J. J. Smee, Coord. Chem. Rev.
2000, 206, 533–561.
D. J. Evans, C. J. Pickett, Chem. Soc. Rev. 2003, 32, 268–275.
S. M. Kotay, D. Das, Int. J. Hydrogen Energy 2008, 33, 258–
263.
(CO) ppm. FTIR (KBr): ν
= 2075 (vs), 2037 (vs), 2001 (vs)
˜
CϵO
cm–1. MS (DEI = 70 eV): m/z = 540 [M+], 512 [M+ – CO], 484
[M+ – 2CO], 456 [M+ – 3CO], 428 [M+ – 4CO], 400 [M+ – 5CO],
372 [M+ – 6CO].
[8]
[9]
Characterization of 1,1,2,2-Tetraphenylethene (5): Colorless crys-
tals, m.p. 222–224 °C (ref.[33] m.p. 222 °C). 1H NMR (200 MHz,
CDCl3, 25 °C): δ = 7.05–7.21 (m, 20 H, Ar-H) ppm. MS (DEI =
70 eV): m/z = 332 [M+].
[10]
a) J. F. Capon, F. Gloaguen, F. Y. Pétillon, P. Schollhammer,
J. Talarmin, Eur. J. Inorg. Chem. 2008, 4671–4681; b) D. M.
Heinekey, J. Organomet. Chem. 2009, 694, 2671–2680; c) F.
Gloaguen, T. B. Rauchfuss, Chem. Soc. Rev. 2009, 38, 100–108;
d) C. Tard, X. Liu, S. K. Ibrahim, M. Bruschi, L. D. Gioia, S.
Davies, X. Yang, L.-S. Wang, G. Sawers, C. J. Pickett, Nature
2005, 434, 610–613; e) F. Gloaguen, J. D. Lawrence, T. B.
Rauchfuss, J. Am. Chem. Soc. 2001, 123, 9476–9477; f) F.
Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Benard, M.-
M. Rohmer, Inorg. Chem. 2002, 41, 6573–6582; g) R. Mejia-
Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga, M. Y.
Darensbourg, J. Am. Chem. Soc. 2004, 126, 12004–12014; h)
J.-F. Capon, F. Gloaguen, P. Schollhammer, J. Talarmin, J.
Electroanal. Chem. 2006, 595, 47–52; i) G. A. N. Felton, A. K.
Vannucci, J. Chen, L. T. Lockett, N. Okumura, B. J. Petro, U. I.
Zakai, D. H. Evans, R. S. Glass, D. L. Lichtenberger, J. Am.
Chem. Soc. 2007, 129, 12521–12530; j) T. Liu, M. Y. Dar-
ensbourg, J. Am. Chem. Soc. 2007, 129, 7008–7009; k) M. Y.
Darensbourg, Nature 2005, 433, 598–591; l) J. Windhager, M.
Rudolph, S. Bräutigam, H. Görls, W. Weigand, Eur. J. Inorg.
Chem. 2007, 18, 2748–2760.
a) J. Windhager, H. Gorls, H. Petzold, G. Mloston, G. Linti,
W. Weigand, Eur. J. Inorg. Chem. 2007, 4462–4471; b) A. Q.
Daraosheh, H. Görls, M. El-khateeb, G. Mloston, W. Weigand,
Eur. J. Inorg. Chem. 2011, 349–355; c) H. Alper, J. Organomet.
Chem. 1975, 84, 347–350; d) H. Alper, A. S. K. Chan, J. Am.
Chem. Soc. 1973, 95, 4905–4913; e) H. Alper, A. S. K. Chan,
Inorg. Chem. 1974, 13, 232–236.
a) K. Shimada, K. Kodaki, S. Aoyagi, Y. Takikawa, C. Kabuto,
Chem. Lett. 1999, 695–696; b) H. Petzold, S. Bräutigam, H.
Görls, W. Weigand, M. Celeda, G. Mloston, Chem. Eur. J.
2006, 12, 8090–8095; c) G. Mloston, A. Majchrzak, A. Sen-
ning, I. Søtofte, J. Org. Chem. 2002, 67, 5690–5695; d) V. Polsh-
ettiwar, M. K. Kaushik, Tetrahedron Lett. 2004, 45, 6255–6257.
a) R. Huisgen, J. Rapp, Tetrahedron 1997, 53, 939–960; b) T.
Saito, Y. Shundo, S. Kitazawa, S. Motoki, J. Chem. Soc., Chem.
Commun. 1992, 600–602; c) J. J. Eisch, Y. Qian, M. Singh, J.
Organomet. Chem. 1996, 512, 207–217.
Electrochemistry: The cyclic voltammograms were measured in a
three electrode cell with a 1.0 mm diameter glassy carbon disc
working electrode, a platinum auxiliary electrode, and Ag/AgCl in
CH3CN as the reference electrode. The solvent contained
[nBu4N][PF6] (0.1 m) as the supporting electrolyte. The measure-
ments were performed at room temperature with a Metrohm 663
VA Standard galvanostat. Deaeration of the sample solutions was
accomplished by passing a stream of nitrogen through the solutions
for 5 min prior to the measurements, and the solutions were kept
under nitrogen for the duration of the measurements. All of the
data obtained were corrected against the Fc/Fc+ couple as an in-
ternal standard (E1/2 = 503 mV vs. Ag/AgCl in CH3CN).
Crystal Structure Determination: The intensity data for the com-
pounds were collected with a Nonius KappaCCD diffractometer
by using graphite-monochromated Mo-Kα radiation. The data were
corrected for Lorentz and polarization effects but not for absorp-
tion effects.[34,35] The crystallographic data, as well as the structure
solutions and refinement details, are summarized in Table 2. The
structures were solved by direct methods (SHELXS)[36] and were
[11]
2
refined by full-matrix least-squares techniques against Fo
(SHELXL-97).[36] All of the hydrogen atom positions were included
at the calculated positions with fixed thermal parameters. All of
the non-hydrogen atoms were refined anisotropically.[36] XP (SIE-
MENS Analytical X-ray Instruments, Inc.) was used for the struc-
ture representations.
[12]
[13]
CCDC-803654 (for 3c), -803655 (for 3d), -803656 (for 4b) and
-803657 (for 4c) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[14]
[15]
[16]
F. Gloaguen, J. D. Lawrence, M. Schmidt, S. R. Wilson, T. B.
Rauchfuss, J. Am. Chem. Soc. 2001, 123, 12518–12527.
L.-C. Song, Z.-Y. Yang, H.-Z. Bian, Q.-M. Hu, Organometal-
lics 2004, 23, 3082–3084.
A. Q. Daraosheh, M. K. Harb, J. Windhager, H. Görls, M. El-
khateeb, W. Weigand, Organometallics 2009, 28, 6275–6280.
H. Li, T. B. Rauchfuss, J. Am. Chem. Soc. 2002, 124, 726–727.
U.-P. Apfel, Y. Halpin, M. Gottschaldt, H. Görls, J. G. Vos, W.
Weigand, Eur. J. Inorg. Chem. 2008, 5112–5118.
Acknowledgments
This work has been funded by the European Union (EU)
(SYNTHCELLS project, Approaches to the Bioengineering of
Synthetic Minimal Cells), grant number #FP6043359 (to A. D.).
U.-P. A. is thankful for a fellowship from the Studienstiftung des
deutschen Volkes.
[17]
[18]
[19]
[20]
[21]
[22]
[23]
L.-C. Song, Z.-Y. Yang, Y.-J. Hua, H.-T. Wang, Y. Liu, Q.-M.
Hu, Organometallics 2007, 26, 2106–2110.
[1] J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesi-
adka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yach-
andra, Science 2006, 314, 821–825.
[2] R. E. Blankenship, Molecular Mechanisms of Photosynthesis,
Blackwell Science Ltd., Oxford, UK, 2002, pp. 6–10.
[3] G. Renger, A. R. Holzwarth, Primary Electron Transfer, in:
Photosystem II: The Light-Driven Water: Plastoquinone Oxido-
reductase (Eds.: T. J. Wydrzynski, K. Satoh), Springer, Dord-
recht, 2005, vol. 22, p. 139.
[4] P. M. Vignais, B. Billoud, J. Meyer, FEMS Microbiol. Rev.
2001, 25, 455–501.
[5] J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet,
Chem. Rev. 2007, 107, 4273–4303.
E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies, M. Y. Dar-
ensbourg, J. Am. Chem. Soc. 2001, 123, 3268–3278.
S. Ott, M. Kritikos, B. Åkermark, L. Sun, Angew. Chem. 2003,
115, 3407; Angew. Chem. Int. Ed. 2003, 42, 3285–3288.
S. Ezzaher, J.-F. Capon, F. Gloaguen, F. Y. Petillon, P.
Schollhammer, J. Talarmin, Inorg. Chem. 2007, 46, 3426–3428.
M. Razavet, S. C. Davies, D. L. Hughes, J. E. Barclay, D. J. Ev-
ans, S. A. Fairhurst, X. Liu, C. J. Pickett, Dalton Trans. 2003,
586–595.
[24]
Y. Si, K. Charreteur, J.-F. Capon, F. Gloaguen, F. Y. Pétillon, P.
Schollhammer, J. Talarmin, J. Inorg. Biochem. 2010, 104, 1038–
1042.
Eur. J. Inorg. Chem. 2012, 318–326
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
325