ORGANIC
LETTERS
2012
Vol. 14, No. 5
1238–1241
Pd-Catalyzed Arylation/Oxidation of
Benzylic CꢀH Bond
Yongju Xie,† Yuzhu Yang,† Lehao Huang,† Xunbin Zhang,† and Yuhong Zhang*,†,‡
Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of
China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University,
Lanzhou 730000, People’s Republic of China
Received January 9, 2012
ABSTRACT
A palladium-catalyzed benzylic CꢀH arylation/oxidation reaction leading to diaryl ketones has been accomplished. The indispensable role of the
bidentate system is disclosed for this sequential process. This chemistry offers a direct new access to a range of diarylketones.
Transition-metal-catalyzed selective CꢀH bond acti-
vation has attracted considerable attention because it
provides an unprecedented disconnection strategy for
constructing carbonꢀcarbon and carbonꢀheteroatom
bonds.1 Recently, significant progresses in the develop-
ment of metal-catalyzed sp2 CꢀH activations have been
approached.2 However, attempts to establish metal-
catalyzed direct functionalization of sp3 CꢀH bonds have
met with great difficulty for both kinetic and thermody-
namic reasons.3 The benzyl group is an important motif of
organic synthesis, and the benzylic CꢀH bond belongs to a
relatively active sp3 CꢀH bond due to the proximity of the
aromatic system. However, the relevant examples of such
direct functionalizations have thus far remained scarce. A
pioneering work by Daugulis and co-workers describes the
method by employing bidentate systems for the direct
arylation of aliphatic sp3 CꢀH bonds.4 Their strategy
has been utilized in the synthesis of natural product (þ)-
obafluorin.5 Recently, Chatani’s group presented impor-
tant studies by the use of ruthenium catalyst and bidentate
systems for the cyclocarbonylation of aromatic6a and
aliphatic amides.6b These breaking discoveries provide
promising routes for the activation of sp3 CꢀH bond.
Herein, we report our findings on palladium-catalyzed
benzylic CꢀH arylation/oxidation that offers the useful
diarylmethanones by employing aryl iodides as coupling
partners. Importantly, the presence of a bidentate system is
essential for this sequential arylation/oxidation process.
The monodentate directing groups failed to achieve the
transformation (Scheme 1).
(1) (a) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (b)
Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (c) Cho, S. H.;
Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (d)
Ackermann, L. Chem. Rev. 2011, 111, 1315. (e) Wencel-Delord, J.;
Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (f) Lyons,
T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (g) Ashenhurst, J. A.
Chem. Soc. Rev. 2010, 39, 540. (h) Lei, A.; Liu, W.; Liu, C.; Chen, M.
Dalton Trans. 2010, 39, 10352. (i) Daugulis, O. Top. Curr. Chem. 2010,
292, 57. (j) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212. (k) Li,
C.-J. Acc. Chem. Res. 2009, 42, 335. (l) Colby, D. A.; Bergman, R. G.;
Ellman, J. A. Chem. Rev. 2009, 110, 624. (m) Bellina, F.; Rossi, R. Chem.
Rev. 2009, 110, 1082. (n) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074. (o) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett
2008, 949. (p) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007,
36, 1173.
(2) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 14560. (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford,
M. S. J. Am. Chem. Soc. 2005, 127, 7330. (c) Wang, D.-H.; Mei, T.-S.;
Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. (d) Li, B.-J.; Tian, S.-L.;
Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (e) Deng, G.;
Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 6278. (f) Tsai, A. S.;
Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011,
ꢀ
ꢀ
133, 1248. (g) Garcıa-Rubia, A.; Urones, B.; Gomez Arrayas, R.;
´
Carretero, J. C. Angew. Chem., Int. Ed. 2011, 50, 10927.
(3) (a) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882. (b) Dangel,
B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc.
2002, 124, 11856. (c) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2004, 126, 9542. (d) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
(4) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2010, 132, 3965.
(5) He, G.; Chen, G. Angew. Chem., Int. Ed. 2011, 50, 5192.
r
10.1021/ol300037p
Published on Web 02/22/2012
2012 American Chemical Society