than 12% in standard AM 1.5G sunlight.2 However, the
main drawback of these dyes is a lack of absorption in the
near-infrared (NIR) region.
We report here the details of the synthesis of novel NIR-
absorbing simple asymmetric Sq dyes carrying indoline
moieties for use in DSSCs with nanocrystalline TiO2.
Sq 31 and 33 were synthesized as shown in Scheme 1.
Indoles 2 were prepared in 76% to quantitative yields
via the BuchwaldꢀHartwig cross-coupling reaction of
1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole (1) with the
corresponding bromoaromatics, such as 2-bromo-9,9-
dimethyl-9H-fluorene and (2-(4-bromophenyl)ethene-1,
1-diyl)dibenzene, in the presence of palladium acetate
(8 mol %), tri-tert-butylphosphine (7 mol %), and potassium
tert-butoxide (1.7 equiv) in toluene at 80 ꢀC. The reaction
of the indoles 2 with 3,4-dichlorocyclobut-3-ene-1,2-dione
(3) in toluene at 80 ꢀC gave3-substituted 3-chlorocyclobut-
3-ene-1,2-diones 4 in yields of 50ꢀ84%, and subsequent
hydrolysis in a mixed solvent composed of acetic acid and
water (v/v = 4/1) at reflux temperature for 4ꢀ29 h gave
3-substituted 4-hydroxycyclobut-3-ene-1,2-diones 5 in
yields of 46ꢀ64%.
Recently, squaraines (Sq) have attracted attention be-
cause of their strong absorption and sensitizing abilities in
the long-wavelength visible region of solar light. Conse-
quently, the longest edge of incident photon-to-current
conversion efficiencies (IPCEs) inDSSCs withSq dyes that
have been reported to date are ca. 750 nm.3 By analogy to
the molecular design of visible light-absorbing organic
dyes, the introduction of not only linker groups, such as
phenyl, alkenyl, thienyl, and pyrrole groups, between
donor and acceptor groups in Sq dyes, but also another
Sq moiety has been shown to lead to a red shift in the
absorption maximum and sensitization in the NIR region
(up to ca. 900 nm).3bꢀd
During the development of long-wavelength visible
light- and NIR-absorbing organic dyes, such as asym-
metric Sq4 and heptamethincyanine (KFH)5 dyes for use
in DSSCs, we synthesized for the first time (1) two novel
NIR-sensitizing simple asymmetric Sq dyes by changing a
di-n-octylaminophenyl group to an indoline moiety.
Furthermore, (2) the absorption maxima (λmax) of these
Sq dyes showed a red shift of 11 nm compared with that of
dialkylaminophenylated Sq. Finally, (3) the simple asym-
metric Sq dyes that do not require the introduction of linker
groups, such as phenyl, thienyl, or pyrrole groups, are quite
efficiently sensitized on titanium oxide (TiO2) with the
long-wavelength visible and NIR region (up to 800 nm) of
the spectrum and show a remarkable conversion efficiency
(η) of 3.75% (AM 1.5G) with an IPCE of 63% (650 nm), a
short-circuit photocurrent density (Jsc) of 13.64 mA, an
open-circuitphotovoltage (Voc) of 0.48, and a fill factor (ff)
of 0.57.
Scheme 1. Synthesis of Sq 31 and Sq 33
(3) For a recent review, see: (a) Beverina, L.; Salice, P. Eur. J. Org.
Chem. 2010, 1207. For selected examples, see: (b) Paek, S.; Choi, H.;
Kim, C.; Cho, N.; So, S.; Song, K.; Nazeeruddin, M. K.; Ko, J. Chem.
Commun. 2011, 47, 2874. (c) Maeda, T.; Hamamura, Y.; Miyanaga, K.;
Shima, N.; Yagi, S.; Nakazumi, H. Org. Lett. 2011, 13, 5994. (d) Li, J. -Y.;
Chen, C.-Y.; Lee, C.-P.; Chen, S.-C.; Lin, T.-H.; Tsai, H.-H.; Ho, K.-C.;
Wu, C.-G. Org. Lett. 2010, 12, 5454. (e) Pandey, S. S.; Inoue, T.; Fujikawa,
N.; Yamaguchi, Y.; Hayase, S. Thin Solid Films 2010, 519, 1066. (f) Pandey,
S. S.; Inoue, T.; Fujikawa, N.; Yamaguchi, Y.; Hayase, S. J. Photochem.
Photobiol., A 2010, 214, 269. (g) Holliman, P. J.; Davies, M. L.; Connell, A.;
Velasco, B. V.; Watson, T. M. Chem. Commun. 2010, 46, 7256. (h) Choi, H.;
Finally, 1-carboxyethyl-3,3-dibutyl-2-methylindolenium
iodide (6)5a reacted with 4-hydroxybut-3-ene-1,2-diones 5
in a mixed solvent of toluene and butanol (v/v = 1/1) at
reflux temperature for 5ꢀ24 h to produce Sq 31 and 33 in
yields of 9ꢀ29%.
€
Kim, J.-J.; Song, K.; Ko, J.; Nazeeruddin, M. K.; Gratzel, M. J. Mater.
Chem. 2010, 20, 3280. (i) Kim, S.; Mor, G. K.; Paulose, M.; Varghese,
O. K.; Baik, C.; Grimes, C. A. Langmuir 2010, 26, 13486. (j) Yum, J.-H.;
€
Baranoff, E.; Hardin, B. E.; Hoke, E. T.; McGehee, M. D.; Nuesch, F.;
€
Gratzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2010, 3, 434. (k)
The UVꢀvis absorption in DMSO solution and on
nanoporous TiO2, along with the emission and photo-
chemical properties of Sq 31 and Sq 33, are listed in Table 1
and shown in Figure 1. The absorption spectra of Sq 31
and Sq 33 show peaks in the long-wavelength visible region
in DMSO solution, and the λmax values of Sq 31 and Sq 33
are the same (643 nm). These values are red-shifted (by 11 nm)
compared to that of Sq 3 (λmax = 632 nm, ε = 125 000
Mꢀ1 cmꢀ1), which has a di-n-octylaminophenyl group
instead of an indoline group,4 due to the potent electron-
donating properties of the indoline moiety. The molar
extinction coefficients (ε) of Sq 31 and Sq 33 were
€
Yum, J.-H.; Hardin, B. E.; Moon, S.-J.; Baranoff, E.; Nuesch, F.;
McGehee, M. D.; Gratzel, M.; Nazeeruddin, M. K. Angew. Chem.,
€
Int. Ed. 2009, 48, 9277. (l) Geiger, T.; Kuster, S.; Yum, J.-H.; Moon, S.-J.;
€
€
Nazeeruddin, M. K.; Gratzel, M.; Nuesch, F. Adv. Funct. Mater. 2009, 19,
2720. (m) Yum, J. -H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.;
€
€
Nuesch, F.; De Angelis, F.; Gratzel, M.; Nazeeruddin, M. K. J. Am.
Chem. Soc. 2007, 129, 10320. (n) Burke, A.; Schmidt-Mende, L.; Ito, S.;
€
Gratzel, M. Chem. Commun. 2007, 234.
(4) Otsuka, A.; Funabiki, K.; Sugiyama, N.; Yoshida, T.; Minoura,
H.; Matsui, M. Chem. Lett. 2006, 35, 666.
(5) (a) Funabiki, K.; Mase, H.; Hibino, A.; Tanaka, N.; Mizuhata,
N.; Sakuragi, Y.; Nakashima, A.; Yoshida, T.; Kubota, Y.; Matsui, M.
Energy Environ. Sci. 2011, 4, 2186. (b) Otsuka, A.; Funabiki, K.;
Sugiyama, N.; Mase, H.; Yoshida, T.; Minoura, H.; Matsui, M. Chem.
Lett. 2008, 37, 176. (c) Matsui, M.; Hashimoto, Y.; Funabiki, K.; Jin,
J. -Y.; Yoshida, T.; Minoura, H. Synth. Met. 2005, 148, 147.
Org. Lett., Vol. 14, No. 5, 2012
1247