K. Pericherla et al. / Tetrahedron Letters 53 (2012) 1253–1257
1257
δ
O
N
N
Yb(OTf)3
O
Ar
H
N
Yb(OTf)3
N
1
H
O
H
Ar
δ
N
OH
N
Ar
N
Ar
Yb(OTf)3
6
Yb(OTf)3
N
2
N
N
N
N
N
N
N
N
N
N
-OH-
+
H
Ar
O
NH
-Yb(OTf)3
Ar
Ar
Ar
Yb(OTf)3
NH2COCH3 (3)
CH3
O
7
4
5
Scheme 2. Plausible mechanism for synthesis of 1-amidomethyl-imidazo[1,2-a]pyridines.
Based on the product distribution, a plausible reaction mecha-
nism is proposed in Scheme 2. It is expected that in the presence
of Lewis acid, aldehyde (1) gets activated and is attacked by imi-
dazo[1,2-a]pyridine at C-3 position to give aryl alcohol intermedi-
ate 6. Apparently, the C-3 position is the most electron-rich
position in imidazo[1,2-a]pyridine nucleus and thus electrophilic
substitution reaction takes place at this position selectively. This
intermediate 6 then generates an ion 7 by losing OH in presence
of Yb(OTf)3 which is then attacked by the nitrogen of acetamide
to give the desired product 4. However, if the intermediate 7 is at-
tacked by another molecule of imidazo[1,2-a]pyridine then it leads
to bis(imidazo[1,2-a]pyridine) derivative 5. To further confirm the
structure of 5 we reacted imidazo[1,2-a]pyridine (1a) and alde-
hyde (2a0) in the absence of acetamide under similar condition
and as expected we got the compound 5aa0.
We subsequently investigated the possibility of recycling of the
catalyst. After first cycle for model reaction, the product was ex-
tracted by ethyl acetate and Yb(OTf)3 was dried on rotatory evap-
orator under vacuum for subsequent reactions. The recovered
Yb(OTf)3 was charged with fresh lot of aldehyde, acetamide, imi-
dazopyridine, and the reaction was performed under same condi-
tions. After completion of reaction the product was extracted.
The above sequence was repeated four times to give 4a in good
yields (72%, 69%, 68% & 66%) without much loss in catalytic activity
of Yb(OTf)3.
In summary, we have developed a straightforward method for
the synthesis of 1-amidomethyl-imidazo[1,2-a]pyridines by
Yb(OTf)3 catalyzed three-component reaction of aldehydes, acet-
amide, imidazopyridine. A series of 3-substituted imidazo[1,2-
a]pyridines have been synthesized in excellent yield (21–74%).
The catalyst can be recycled upto four cycles without much de-
crease in catalytic activity. Environment friendly catalyst and good
yield are the advantages of the method. To the best of our knowl-
edge this is the first report on synthesis of 1-amidomethyl-imi-
dazo[1,2-a]pyridines. We are evaluating c-Src kinase inhibition
and anticancer activity of 4, which will be published elsewhere.
References and notes
1. (a) Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Eur. J. Med. Chem. 1991, 26, 13; (b)
Fisher, M. H.; Lusi, A. J. Med. Chem. 1972, 15, 982.
2. Rival, Y.; Grassy, G.; Michel, G. Chem. Pharm. Bull. 1992, 40, 1170.
3. (a) Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.;
Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Eur. J. Med. Chem.
1999, 34, 271; (b) Gudmundsson, K. S.; Johns, B. A. Bioorg. Med. Chem. Lett.
2007, 17, 2735; (c) Gueiffier, A.; Mavel, S.; Lhassani, M.; Elhakmaoui, A.;
Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.-C.; Witvrouw, M.; Balzarini, J.;
De Clercq, E.; Chapat, J.-P. J. Med. Chem. 1998, 41, 5108; (d) Elhakmaoui, A.;
Gueiffier, A.; Milhavet, J.-C.; Blache, Y.; Chapat, J.-P.; Chavignon, O.; Teulade, J.-
C.; Snoeck, R.; Andrei, G.; De Clercq, E. Bioorg. Med. Chem. Lett. 1994, 4, 1937; (f)
Véron, J.-B.; Enguehard-Gueiffier, C.; Snoeck, R.; Andrei, G.; Clercq, E. D.;
Gueiffier, A. Bioorg. Med. Chem. 2007, 15, 7209; (g) Véron, J.-B.; Allouchi, H.;
Enguehard-Gueiffier, C.; Snoeck, R.; Andrei, G.; Clercq, E. D.; Gueiffier, A. Bioorg.
Med. Chem. 2008, 16, 9536.
4. Hamdouchi, C.; Ezquerra, J.; Vega, J. A.; Vaquero, J. J.; Alvarez-Builla, J.; Heinz, B.
A. Bioorg. Med. Chem. Lett. 1999, 9, 1391.
5. (a) Cai, D.; Byth, K. F.; Shapiro, G. I. Cancer Res. 2006, 66, 435; (b) Byth, K. F.;
Geh, C.; Forder, C. L.; Oakes, S. E.; Thomas, A. P. Mol. Cancer Ther. 2006, 5, 655.
6. Enguehard, C.; Renou, J.-L.; Allouchi, H.; Leger, J.-M.; Gueiffier, A. Chem. Pharm.
Bull. 2000, 48, 935.
7. Wallmark, B.; Briving, C.; Fryklund, J.; Munson, K.; Jackson, R.; Mendlein, J.;
Rabon, E.; Sachs, G. J. Biol. Chem. 1987, 262, 2077; (b) Mendlein, J.; Sachs, G. J.
Biol. Chem. 1990, 265, 5030.
8. Serra, M.; Madau, P.; Chessa, M. F.; Caddeo, M.; Sanna, E.; Trapani, G.; Franco,
M.; Liso, G.; Purdy, R. H.; Barbaccia, M. L.; Biggio, G. British J. Pharmacol. 1999,
127, 177; (b) Trapani, G.; Franco, M.; Ricciardi, L.; Latrofa, A.; Genchi, G.; Sanna,
E.; Tuveri, F.; Cagetti, E.; Biggio, G.; Liso, G. J. Med. Chem. 1997, 40, 3109; (c)
Denora, N.; Laquintana, V.; Pisu, M. G.; Dore, R.; Murru, L.; Latrofa, A.; Trapani,
G.; Sanna, E. J. Med. Chem. 2008, 51, 6876.
9. Zhuang, Z.-P.; Kung, M.-P.; Wilson, A.; Lee, C.-W.; Ploussl, K.; Hou, C.;
Holtzman, D. M.; Kung, H. F. J. Med. Chem. 2003, 46, 237.
10. Abe, Y.; Kayakiri, H.; Satoh, S.; Inoue, T.; Sawada, Y.; Imai, K.; Inamura, N.; Asano,
M.; Hatori, C.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 1998, 41, 564.
11. (a) Ganem, B. Acc. Chem. Res. 2009, 42, 463; (b) Armstrong, R. W.; Combs, A. P.;
Tempest, P. A.; Brown, D. A.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123; (c)
Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10, 51; (d) Domling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168.
12. (a) Molander, G. A. Chem. Rev. 1992, 92, 29; (b) Kagan, H. B.; Namy, J. L.
Tetrahedron 1986, 42, 6573; (c) Kobayashi, S. Pure Appl. Chem. 1998, 70, 1019;
(d) Kobayashi, S.; Manabe, K. Pure Appl. Chem. 2000, 72, 1373; (e) Kobayashi, S.;
Manabe, K. Acc. Chem. Res. 2002, 35, 209.
13. (a) Rao, V. K.; Kumar, A. Synlett 2011, 2157; (b) Kumar, A.; Rao, M. S.; Rao, V. K.
Aust. J. Chem. 2010, 63, 135; (c) Kumar, A.; Rao, M. S.; Ahmad, I.; Khungar, B.
Aus. J. Chem. 2009, 62, 322; (d) Kumar, A.; Ahmad, I.; Rao, M. S. J. Sulfur Chem.
2009, 30, 570; (e) Kumar, A.; Ahmed, I.; Rao, M. S. Can. J. Chem 2008, 86, 899; (f)
Kumar, A.; Jain, N.; Rana, S.; Chauhan, S. M. S. Synlett 2004, 2785.
14. Chaubet, G.; Maillard, L. T.; Martinez, J.; Masurier, N. Tetrahedron 2011, 67, 4897.
15. (a)Kaye, I.A.;Parris, C.L.;Burlant, W.J. J.Am. Chem.Soc. 1953,75,746;(b)Tomoda,
H.; Hirano, T.; Saito, S.; Mutai, T.; Araki, K. Bull. Chem. Soc. Jpn. 1999, 72, 1327.
16. General procedure for the synthesis of 4: Ytterbium triflate (78 mg, 0.125 mmol,
20 mol %) was added to a 10 mL round bottom flask containing imidazo[1,2-
a]pyridine (1) (0.627 mmol, 1.0 equiv), aldehyde (2) (0.627 mmol, 1.0 equiv)
and acetamide (3) (56 mg, 0.940 mmol, 1.5 equiv) in 1,4-dioxane (3 mL). The
reaction mixture was stirred at 120 °C for 12 h. After completion of the
reaction, the reaction mixture was allowed to cool to room temperature and
the volatiles were evaporated. The residue was diluted with water (10 mL) and
extracted with ethyl acetate (2 ꢃ 10 mL). The combined organic layer was
dried over anhydrous sodium sulfate and evaporated to dryness. Crude
compound was purified by column chromatography using dichloromethane/
methanol (96:4 v/v) as eluent to get compound 4.
Acknowledgments
This work was financially supported by the University Grant
Commission (UGC), New Delhi. K.P. is thankful to BITS Pilani for re-
search fellowship.
Supplementary data
Supplementary data associated with this article can be found, in