LETTER
Synthesis of Dibenzofurans
3025
(3) Bressler, D. C.; Fedorak, P. M. Can. J. Microbiol. 2000, 46,
397.
(4) (a) Suzuki, H.; Suzuki, T.; Seo, S. US 20110114928, 2011.
(b) Kawaguchi, K.; Nakano, K.; Nozaki, K. J. Org. Chem.
2007, 72, 5119.
Pd(OAc)2
reducing
reagent
O
HL
+
N2
Pd(0)
(5) Komine, Y.; Kamisawa, A.; Tanaka, K. Org. Lett. 2009, 11,
1a
2361.
reductive
elimination
oxidative
addition
(6) (a) Henderson, W. A.; Zweig, A. Tetrahedron Lett. 1969,
625. (b) Bratt, J.; Suchitzky, H. J. Chem. Soc., Chem.
Commun. 1972, 949.
O
(7) (a) Ejlx, J. A.; Murphy, D. P. H.; Sargent, M. V. Synth.
Commun. 1972, 2, 427. (b) Zeller, K.-P.; Petersen, H.
Synthesis 1975, 532.
(8) Wang, J.-Q.; Harvey, R. G. Tetrahedron 2002, 58, 5927.
(9) (a) Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.;
Fagnou, K. J. Org. Chem. 2008, 73, 5022. (b) Campeau,
L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc.
2005, 128, 581.
+ N2
H
PdHL
Pd
L
I
C–H activation
O
(10) (a) Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree,
R. H. Chem. Commun. 2008, 6312. (b) Wang, C.; Piel, I.;
Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194.
(11) Gajera, J. M.; Gopalan, B.; Yadav, P. S.; Patil, S. D.; Gharat,
L. A. J. Heterocycl. Chem. 2008, 45, 797.
(12) (a) Graebe, C.; Ullmann, F. Ber. Dtsch. Chem. Ges. 1896,
29, 1876. (b) DeTar, D. F. Org. React. (N.Y.) 1957, 409.
(c) Wassmundt, F. W.; Pedemonte, R. P. J. Org. Chem.
1995, 60, 4991.
(13) (a) Yamato, T.; Hideshima, C.; Prakash, G. K. S.; Olah,
G. A. J. Org. Chem. 1991, 56, 3192. (b) Petrocelli, F. P.;
Klein, M. T. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 635.
(14) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu,
J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.
(15) (a) Sierakowski, A. F. Aust. J. Chem. 1983, 36, 1281.
(b) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem.
2007, 72, 6905.
(16) (a) Du, Z. T.; Wang, Y.; Ma, W. L.; Lv, D.; Yu, H. R. Nat.
Prod. Commun. 2011, 6, 167. (b) Du, Z. T.; Yu, H. R.; Xu,
Y.; Song, Q. L.; Li, A. P. J. Chin. Chem. Soc. (Taipei,
Taiwan) 2010, 57, 399. (c) Du, Z. T.; Xu, Y.; Yu, H. R.; Li,
Y. Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, 66,
O415. (d) Du, Z. T.; Lu, J.; Yu, H. R.; Xu, Y.; Li, A. P.
J. Chem. Res. 2010, 222. (e) Du, Z. T.; Li, Y.; Wang, Y.;
Ding, L. C.; Gao, J. M. Synth. Commun. 2010, 40, 1920.
(17) CCDC 847585 contains the crystallographic data for this
paper. These have been deposited with the Cambridge
Crystallographic Data Center.
O
Pd
H
L
2a
II
Scheme 2 Proposed mechanism of palladium-catalysed formation
of dibenzofuran
action of Pd(OAc)2.20,21 This method is bestowed with
several unique merits, such as high conversions and
yields, simplicity in operation, cost-effectiveness and
functional-group tolerance. Thus, we believe that this
novel methodology will be a practical alternative to the
existing procedures and cater to the needs of academia as
well as industry. Further exploration of the mechanism,
scope, and synthetic application of the reaction are under-
way.
Supporting Information for this article is available online at
Acknowledgment
Financial supports from the Fundamental Research Funds for the
Central Universities in NWSUAF (No. QN2009048) and the Natio-
nal Natural Science Foundation of China (20802058) are greatly ap-
preciated.
(18) Jiro, T. Palladium Reagents and Catalysts: New
Perspectives for the 21st Century; Wiley: New York, 2004.
(19) Zeng, M.; Du, Y.; Shao, L.; Qi, C.; Zhang, X.-M. J. Org.
Chem. 2010, 75, 2556.
References and notes
(20) General procedure for the preparation of dibenzofurans from
ortho-diazonium salts of diaryl ethers using Pd(OAc)2: To a
stirred suspension of the ortho-diazonium salt of the
appropriate diaryl ether (5 mmol) in EtOH (20 mL), a
catalytic amount Pd(OAc)2 (33 mg, 0.15 mmol) was added,
and the resulting mixture was heated at reflux for 30–60 min.
The precipitate of metal was filtered, the filtrate was
evaporated under vacuum, and the crude product was
purified by column chromatography on silica gel eluting
with a mixture of petroleum ether and EtOAc to give
dibenzofurans.
(1) (a) Kokubun, T.; Harborne, J. B.; Eagles, J.; Waterman, P.
G. Phytochemistry 1995, 39, 1033. (b) Pagani, A.; Scala, F.;
Chianese, G.; Grassi, G.; Appendino, G.; Taglialatela-
Scafati, O. Tetrahedron 2011, 67, 3369. (c) Carney, J. R.;
Krenisky, J. M.; Williamson, R. T.; Luo, J. J. Nat. Prod.
2002, 65, 203.
(2) (a) De Lombaert, S.; Blanchard, L.; Stamford, L. B.; Tan, J.;
Wallace, E. M.; Satoh, Y.; Fitt, J.; Hoyer, D.; Simonsbergen,
D.; Moliterni, J.; Marcopoulos, N.; Savage, P.; Chou, M.;
Trapani, A. J.; Jeng, A. Y. J. Med. Chem. 2000, 43, 488.
(b) Kaul, R.; Deechongkit, S.; Kelly, J. W. J. Am. Chem. Soc.
2002, 124, 11900. (c) Momotake, A.; Lindegger, N.; Niggli,
E.; Barsotti, R. J.; Ellis-Davies, G. C. R. Nat. Methods 2006,
3, 35. (d) Oliveira, A. M. A. G.; Raposo, M. M. M.; Oliveira-
Campos, A. M. F.; Machado, A. E. H.; Puapairoj, P.; Pedro,
M.; Nascimento, M. S. J.; Portela, C.; Afonso, C.; Pinto, M.
Eur. J. Med. Chem. 2006, 41, 367.
(21) Spectral data of compound 2i: 1H NMR (500 MHz, CDCl3):
d = 7.88 (s, 1 H), 7.53 (d, J = 8.7 Hz, 1 H), 7.48 (d, J =
7.6 Hz, 1 H), 7.41 (d, J = 8.5 Hz, 1 H), 7.28 (t, J = 7.8 Hz,
1 H), 7.01 (d, J = 7.6 Hz, 1 H), 4.07 (s, 3 H). 13C NMR (125
MHz, CDCl3): d = 154.4, 145.9, 145.6, 128.3, 127.2, 125.8,
124.8, 123.8, 120.6, 112.9, 112.8, 109.9, 56.2. IR: 1443,
1296, 1258, 1199, 1105 cm–1.
Synlett 2011, No. 20, 3023–3025 © Thieme Stuttgart · New York