Journal of the American Chemical Society
Communication
(2) For reviews on dihydropyridines, see: (a) Eisner, U.; Kuthan, J.
Chem. Rev. 1972, 72, 1. (b) Stout, D. M.; Meyers, A. I. Chem. Rev.
1982, 82, 223. (c) Sliwa, W. Heterocycles 1986, 24, 181. (d) Lavilla, R.
J. Chem. Soc., Perkin Trans. 1 2002, 1141. (e) Edraki, N.; Mehdipour,
A. R.; Khoshneviszadeh, M.; Miri, R. Drug Discovery Today 2009, 14,
1058.
We separately examined a Diels−Alder reaction of 3 (Scheme 3).
A C6D6 solution of 3 was reacted with N-methylmaleimide
Scheme 3. Diels−Alder Reaction of N-Boryl-1,2-
dihydropyridines
(3) For examples of 1,2-dihydropyridines utilized in synthesis of
natural products and biologically active compounds, see: (a) Wender,
P. A.; Schaus, J. M.; White, A. W. J. Am. Chem. Soc. 1980, 102, 6157.
(b) Marazano, C.; Goff, M.-T. L.; Fourrey, J.-L.; Das, B. C. J. Chem.
Soc., Chem. Commun. 1981, 389. (c) Raucher, S.; Bray, B. L. J. Org.
Chem. 1985, 50, 3236. (d) Sundberg, R. J.; Cherney, R. J. J. Org. Chem.
1990, 55, 6028. (e) Polniaszek, R. P.; Dillard, L. W. J. Org. Chem.
1992, 57, 4103. (f) Comins, D. L.; Brooks, C. A.; Al-awar, R. S.;
Goehring, R. R. Org. Lett. 1999, 1, 229. (g) Zhao, G.; Deo, U. C.;
Ganem, B. Org. Lett. 2001, 3, 201. (h) Satoh, N.; Akiba, T.;
Yokoshima, S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46, 5734.
(i) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 13873.
(4) Fowler, F. W. J. Org. Chem. 1972, 37, 1321.
(5) The direct conversion of unactivated pyridine to dihydropyridine
derivatives requires strong nucleophiles such as organolithiums or use
of alkali metals. For examples, see: (a) Evans, J. C. W.; Allen, C. F. H.
Org. Synth. 1938, 18, 70. (b) Sulzbach, R. A. J. Organomet. Chem. 1970,
24, 307.
(6) Successful catalytic partial hydrogenation is limited to the
pyridines bearing a carbonyl functional group at the C3 position,
which gives isolable carbonyl-conjugated 1,2-dihydropyridines and
1,4,5,6-tetrahydropyridines. For examples, see: (a) Freifelder, M. J.
Org. Chem. 1964, 29, 2895. (b) Quan, P. M.; Quin, L. D. J. Org. Chem.
1966, 31, 2487. (c) Eisner, U. J. Chem. Soc. D, Chem. Commun. 1969,
1348.
(7, 1.5 equiv). The Diels−Alder reaction took place at room
temperature to give N-borylated 2-azabicyclo[2.2.2]octane
(isoquinuclidine)16 derivatives with high efficiency. These
compounds were isolated in 62−81% total yields after acylation
of the B−N bond with pivaloyl chlorides in the presence of 1d.
It is interesting to note that the corresponding N-acetyldihy-
dropyridine 6a did not react with 7 under the identical reaction
conditions, suggesting that N-borylated dihydropyridine is
much more reactive in the Diels−Alder reaction than the corre-
sponding N-acyl derivatives.
In conclusion, we have established an efficient method for a
dearomatizing conversion of unactivated pyridines to 1,2-
dihydropyridines via rhodium-catalyzed hydroboration. Regio-
selective formation of N-boryl-1,2-dihydropyridines has been
achieved using a rhodium catalyst bearing PCy3 as a ligand. N-
Boryl-1,2-dihydropyridines have been used in a Diels−Alder
reaction to form an isoquinuclidine structure and found to be
more reactive than the corresponding N-acetyl-1,2-dihydropyr-
idines. Synthetic applications utilizing the N-borylated 1,2-
dihydropyridines, as well as mechanistic details of the reaction,
are now under investigation in our laboratory.
(7) For examples of catalytic hydrogenation of pyridines to form
piperidine derivatives, see: (a) Hamilton, T. S.; Adams, R. J. Am. Chem.
Soc. 1928, 50, 2260. (b) Adkins, H.; Kuick, L. F.; Farlow, M.; Wojcik,
B. J. Am. Chem. Soc. 1934, 56, 2425. (c) Freifelder, M.; Stone, G. R. J.
Org. Chem. 1961, 26, 3805. For a recent example of asymmetric
hydrogenation, see: (d) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard,
R.; Lehmann, C. W. Angew. Chem., Int. Ed. 2004, 43, 2850. See also ref
1a and 1b.
(8) For heterogeneous catalyst conditions, see: Cook, N. C.; Lyons, J.
E. J. Am. Chem. Soc. 1966, 88, 3396.
(9) For homogeneous catalyst conditions, see: (a) Hao, L.; Harrod, J.
F.; Lebuis, A.-M.; Mu, Y.; Shu, R.; Samuel, E.; Woo, H.-G. Angew.
Chem., Int. Ed. 1998, 37, 3126. (b) Harrod, J. F.; Shu, R.; Woo, H. G.;
Samuel, E. Can. J. Chem. 2001, 79, 1075. (c) Gutsulyak, D. V.; van der
Est, A.; Nikonov, G. I. Angew. Chem., Int. Ed. 2011, 50, 1384. For a
commentary, see: (d) Osakada, K. Angew. Chem., Int. Ed. 2011, 50,
3845.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and characterization data of the products.
This material is available free of charge via Internet at http://
(10) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2011,
133, 7324.
AUTHOR INFORMATION
(11) For reviews on transition-metal-catalyzed hydroboration, see:
(a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
(b) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957. (c) Crudden,
C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695. (d) Carroll, A.-M.;
O’Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
(e) Brown, J. M. In Modern Rhodium-Catalyzed Organic Reactions;
Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; p 33.
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(12) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Kohn, G.;
Weetman, C. Organometallics 2011, 30, 5556.
(13) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57,
̈
ACKNOWLEDGMENTS
K.O. acknowledges JSPS for fellowship support.
■
3482.
REFERENCES
(14) The N-borylated dihydropyridines 3 are air and moisture
sensitive. Isolation of 3a−3c, 3e−3g, 3k, and 3l, which are derived
from pyridines with low boiling points, was carried out as follows:
After hydroboration, the reaction mixture was treated with activated
charcoal. Filtration of the mixture under an atmosphere of nitrogen
resulted in a rhodium-free colorless solution. The solution was
concentrated in vacuo to remove volatiles including starting pyridines.
Methyl nicotinate derived 3i + 3i′ and 3m could be purified by
■
(1) (a) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171. (b) Zhou, Y.-G.
Acc. Chem. Res. 2007, 40, 1357. (c) Comins, D. L.; O’Connor, S.; Al-
awar, R. S. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier
Science: 2008; Vol 7, p 41. (d) Ahamed, M.; Todd, M. H. Eur. J. Org.
Chem. 2010, 5935. (e) Roche, S. P.; Porco, J. A. Jr. Angew. Chem., Int.
Ed. 2011, 50, 4068.
3701
dx.doi.org/10.1021/ja3002953 | J. Am. Chem. Soc. 2012, 134, 3699−3702