R.N. Singh et al. / Spectrochimica Acta Part A 88 (2012) 60–71
71
where +, −, 0 signs show nucleophilic, electrophilic and radical
attack respectively.
[14] J.R. Dimmock, S.C. Vashishtha, J.P. Stables, Eur. J. Med. Chem. 35 (2000) 241–249.
[15] A. Rauf, M.R. Banday, R.H. Mattoo, Acta Chim. Slov. 55 (2008) 448–452.
[16] S. Rollas, N. Gülerman, H. Erdeniz, Farmaco 57 (2002) 171–174.
[17] V.O. Kozminykh, A.O. Belyaev, E.N. Kozminykh, E.V. Bukanova, T.F. Odegova,
Pharm. Chem. J. 38 (2004) 368–372.
[18] L.W. Zheng, L.L. Wu, B.X. Zhao, W.L. Dong, J.Y. Miao, Bioorg. Med. Chem. 17
(2009) 1957–1962.
[19] D. Sriram, P. Yogeeswari, R.V. Devakaram, Bioorg. Med. Chem. 14 (2006)
3113–3118.
[20] T.L. Smalley, A.J. Peat Jr., J.A. Boucheron, S. Dickerson, D. Garrido, F. Preugschat,
S.L. Schweiker, S.A. Thomson, T.Y. Wang, Bioorg. Med. Chem. 16 (2006)
2091–2094.
[21] B. Szczesna, U. Lipkowska, Supramol. Chem. 13 (2001) 247–251.
[22] L.F. Xu, S. Shan, W.L. Wang, S.H. Wang, Acta Crystallogr. E 64 (2008) o1229.
[23] N. Okabe, T. Nakamura, H. Fakuda, Acta Crystallogr. C 49 (1993) 1678–1680.
[24] S. Vijayakumar, A. Adithya, K.N. Sharafudeen, K. Balakrishna, K. Chandrasekha-
ran, J. Mod. Optics 57 (2010) 670–676.
The maximum values of all the three local electrophilic reactiv-
ity descriptors (fk+, sk+, ωk+) at C13 indicate that this site is prone
to nucleophilic attack. The calculated local reactivity descriptors
for synthesized molecule PDNBAH favor the formation of new het-
erocyclic compounds such as azetidinones and thiazolidinones by
attack of nucleophilic part of the dipolar reagent on the C13 site and
electrophilic part of dipolar reagent on the N14 site of C13 N14
bond. In the same way, the maximum values of all the three local
nucleophilic reactivity descriptors (fk−, sk−, ωk−) at N15 indicate
that this site is more prone to electrophilic attack.
[25] S. Vijayakumar, A. Adhikari, B. Kalluraya, K.N. Sharafudeen, K. Chandrasekha-
ran, J. Appl. Polym. Sci. 119 (2011) 595–601.
4. Conclusions
[26] O. Kwon, M. Jazbinsek, H. Yun, J. Seo, E. Kim, Y. Lee, P. Gunter, Cryst. Growth
Des. 8 (2008) 4021–4025.
[27] M. Yu, H. Lin, H. Lin, Indian J. Chem. A 46 (2007) 1437–1439.
[28] N. Raman, S. Ravichandran, C. Thangaraja, J. Chem. Sci. 116 (2004) 215–219.
[29] J.P. Jasinski, C.J. Guild, C.S.C. Kumar, H.S. Yathirajan, A.N. Mayekar, Bull. Korean
Chem. Soc. 31 (2010) 881–886.
[30] L. Lalib, L.A. Mohamed, M.F. Iskander, Transit. Met. Chem. 25 (2002) 700–705.
[31] M.A. Affan, I.P.P. Foo, B.A. Fasihuddin, E.U.H. Sim, M.A. Hapipah, Malas. J. Anal.
Sci. 13 (2009) 73–85.
[32] A.I. Vogel, Practical, Organic Chemistry, Prentice Hall Publication, New York,
1989, p. 165.
PDNBAH is synthesized and characterized by 1H NMR,
UV–visible, FT-IR, DART-mass and elemental analyses. Theoreti-
cal electronic absorption spectra have some blue shifts compared
with the experimental data and molecular orbital coefficients’ anal-
ysis suggests that electronic transitions are assigned to → *
type. In the present study, experimental and calculated vibra-
tional wavenumber analysis confirms the existence of dimer by
involvement of heteronuclear association through pyrrolic (N H)
and carbonyl (C O) oxygen of ester. The calculated binding ener-
gies of dimer using both DFT and AIM theory are −14.32 and
−15.41 kcal/mol respectively, indicating that both theories are in
good agreement with each other. AIM theory is more appropriate
than DFT since it is also applicable to calculate the heteronuclear
intermolecular hydrogen bond energy of dimer and it is calculated
as −12.29 kcal/mol. In addition, theoretical results from reactivity
descriptors for PDNBAH show most reactivity at C13 for nucle-
ophilic attack, hence it may be used as a precursor for the synthesis
of new heterocyclic compounds such as azetidinones and thiazo-
lidinones.
[33] E.J.H. Chu, T.C. Chu, J. Org. Chem. 19 (1954) 266–269.
[34] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Voth,
G.A. Morokuma, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D.
Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A.
Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02,
Gaussian, Inc., Wallingford, CT 06492, 2003.
[35] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[36] C.T. Lee, W.T. Yang, R.G.B. Parr, Phys. Rev. 37 (1988) 785–790.
[37] D.A. Petersson, M.A. Allaham, J. Chem. Phys. 94 (1991) 6081–6090.
[38] G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Allaham, W.A.J. Mantzaris, J.
Chem. Phys. 89 (1988) 2193–2218.
[39] Y. Hiroshi, E. Akito, Chem. Phys. Lett. 325 (2000) 477–483.
[40] G.A. Zhurko, D.A. Zhurko, Chemcraft: Lite Version Build 08 (Freeware), 2005.
[41] Computer Program GaussView 3.09, Ver. 2, Gaussian, Inc., Pittsburgh, PA.
[42] J.M.L. Martin, V. Alsenoy, C.V. Alsenoy, Gar2ped, University of Antwerp, 1995.
[43] P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101 (1979) 2550–2560.
[44] C.T. Arrannja, M.R. Siva, A.M. Beja, A.F.P.V. Ferreira, A.J.F.N. Sobral, Acta Crystal-
logr. E 64 (2008) o1989.
[45] M.G. Gardiner, R.C. Jones, S. Ng, J.A. Smith, Acta Crystallogr. E 63 (2007)
o470–o471.
[46] M.O. Senge, K.M. Smith, Acta Crystallogr. C 61 (2005) o537–o541.
[47] M.C. Etter, Acc. Chem. Res. 23 (1990) 120–126.
[48] K. Wolinski, J.F. Hinton, J.F. Pulay, J. Am. Chem. Soc. 112 (1990) 8251–8260.
[49] S.W. Xia, X. Xu, Y.L. Sun, Y.L. Fan, Y.H. Fan, C.F. Bi, D.M. Zhang, L.R. Yang, Chin. J.
Struct. Chem. 25 (2006) 849–853.
[50] H. Beraldo, A.M. Barreto, R.P. Vieira, A.P. Rebolledo, N.L. Speziali, C.B. Pinheiro,
G. Chepuis, J. Mol. Struct. 645 (2003) 213–220.
Acknowledgements
The authors are thankful to the Directors of IIT Kanpur and CDRI
Lucknow for providing spectral measurements of PDNBAH and DST,
New Delhi for financial assistance.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] Y. Nakayama, Y. Sanemitsu, J. Org. Chem. 49 (1984) 1703–1707.
[2] H.N. Dogan, A. Duran, S. Rollas, G. Sener, Y. Armutak, M.K. Uysal, Med. Sci. Res.
26 (1998) 755–758.
[3] S.G. Küc¸ ükgüzel, A. Kocatepe, E. De Clercq, F. Sahin, M. Güllüce, Eur. J. Med.
Chem. 41 (2006) 353–359.
[51] A.T. Dubis, S.J. Grabowski, D.B. Romanowska, T. Misiaszek, J. Leszczynski, J. Phys.
Chem. A 106 (2002) 10613–10621.
[4] S.G. Küc¸ ükgüzel, E.E. Oruc¸ , S. Rollas, F. Sahin, A. Ozbek, Eur. J. Med. Chem. 37
(2002) 197–206.
[52] N. Sundaraganesan, S. Ayyappan, H. Umamaheswari, B.D. Joshua, Spectrochim.
Acta A 66 (2007) 17–27.
[5] V.N. Korotchenko, A.V. Shastin, V.G. Nenaidenko, E.S. Balenkova, Russ. J. Org.
Chem. 39 (2003) 527–531.
[6] L.E. Kaïm, L. Gautier, L. Grimaud, L.M. Harwood, V. Michaut, Green Chem. 5
(2003) 477–479.
[53] C.F. Matta, R.J. Boyd, An Introduction to the Quantum Theory of Atoms in
Molecules, Wiley-VCH Verlag Gmbh, Co. kGaA, 2007, pp. 1–30.
[54] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 122 (2000) 11154–11161.
[55] M. Malecka, Struct. Chem. 21 (2010) 175–184.
[7] A. Kotali, I.S. Lafazanis, ARKIVOC vi (2003) 91–94.
[8] X. Deng, N.S. Mani, Org. Lett. 10 (2008) 1307–1310.
[9] X. Deng, N.S. Mani, J. Org. Chem. 73 (2008) 2412–2415.
[10] N.P. Belskaya, W. Wim Dehaen, V.A. Bakulev, ARKIVOC i (2010) 275–332.
[11] S. Rollas, Molecules 12 (2007) 1910–1939.
[56] R.G. Pearson, J. Org. Chem. 54 (1989) 1430–1432.
[57] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516.
[58] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793–1873.
[59] R.G. Parr, L. Szentpály, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922–1924.
[60] K. Chattaraj, S. Giri, J. Phys. Chem. A 111 (2007) 11116–11121.
[61] J. Padmanabhan, R. Parthasarathi, V. Subramaniaan, P.K. Chattaraj, J. Phys.
Chem. A 111 (2007) 1358–1361.
[12] S.D. Toliwal, J. Kalpesh, G. Akshay, B. Anjum, J. Appl. Chem. Res. 10 (2009) 64–72.
[13] P. Kumar, D. Sharma, Acta Pharm. Sci. 52 (2010) 169–180.