implanting various molecules in the DNA helix. Hence, this
site-specific ICL reaction is applicable for the construction of
stable DNAs with different functionalities.
We thank Dr Eiko Ohtsuka and Dr Kousuke Sato (Hokkaido
University) for their helpful discussions and technical assistance.
This work was supported by KAKENHI (21510239).
Notes and references
1 M. Noll, T. M. Mason and P. S. Miller, Chem. Rev., 2006, 106,
277–301.
2 C. Hofr and V. Brabec, Biopolymers, 2005, 77, 222–229.
3 G. D. Cimino, H. B. Gamper, S. T. Isaacs and J. E. Hearst, Annu.
Rev. Biochem., 1985, 54, 1151–1193.
4 D. Kozekov, L. V. Nechev, M. S. Moseley, C. M. Harris,
C. J. Rizzo, M. P. Stone and T. M. Harris, J. Am. Chem. Soc.,
2003, 125, 50–61.
5 (a) G. D. Glick, J. Org. Chem., 1991, 56, 6746–6747; (b) E. Ferentz,
T. A. Keating and G. L. Verdine, J. Am. Chem. Soc., 1993, 115,
9006–9014.
6 (a) C. Dohno, A. Okamoto and I. Saito, J. Am. Chem. Soc., 2005,
127, 16681–16684; (b) M. M. Ali, M. Oishi, F. Nagatsugi, K. Mori,
Y. Nagasaki, K. Kataoka and S. Sasaki, Angew. Chem., Int. Ed.,
2006, 45, 3136–3140; (c) K. Stevens and A. Madder, Nucleic Acids
Res., 2009, 37, 1555–1565; (d) T. Angelov, A. Guainazzi and
O. D. Scharer, Org. Lett., 2009, 11, 661–664; (e) M. Manoharan,
L. K. Andrade and P. D. Cook, Org. Lett., 1999, 1, 311–314.
7 S. Hong and M. M. Greenberg, J. Am. Chem. Soc., 2005, 127,
10510–10511.
8 Y. Yoshimura and K. Fujimoto, Org. Lett., 2008, 10, 3227–3230.
9 (a) S. Dutta, G. Chowdhury and K. S. Gates, J. Am. Chem. Soc.,
2007, 129, 1852–1853; (b) T. Sczepanski, A. C. Jacobs and
M. M. Greenberg, J. Am. Chem. Soc., 2008, 130, 9646–9647.
10 T. Sczepanski, R. S. Wong, J. N. McKnight, G. D. Bowman and
M. M. Greenberg, Proc. Natl. Acad. Sci. U. S. A., 2010, 107,
22475–22480.
Fig. 3 (a) Schematic drawing of enzyme reactions on ICL-duplexes
and the SECM analyses. The bold lines indicate ICL-sites. (b) SECM
images of HRP and ALP reactions on each ICL duplex immobilized
on a gold chip. (c) Plots of the current intensities of the HRP (solid
line) and ALP (dotted line) reactions. These currents were obtained
from line scans shown in the white dotted lines of (b).
11 (a) H. Ide, K. Akamatsu, Y. Kimura, K. Michiue, K. Makino,
A. Asaeda, Y. Takamori and K. Kubo, Biochemistry, 1993, 32,
8276–8283; (b) D. Boturyn, A. Boudali, J.-F. Constant and
J. Lhomme, Tetrahedron, 1997, 53, 5485–5492; (c) D. Boturyn,
J. F. Constant, E. Defrancq, J. Lhomme, A. Barbin and
C. P. Wild, Chem. Res. Toxicol., 1999, 12, 476–482.
43-base template. HRP/ALP-CL2-N equivalently offers both the
enzyme binding sites on a single DNA molecule. Perfectly
matched standard duplexes (PM-bio and PM-F) were also
prepared to evaluate the effects of ICL (Fig. 3a). All duplexes
were immobilized on a gold surface through a thiol tether at
50-ends. After the enzymes were bound with the DNA duplexes,
each enzyme reaction was conducted in the presence of substrates
specific for these enzymes.
12 N. Kojima, T. Takebayashi, A. Mikami, E. Ohtsuka and
Y. Komatsu, J. Am. Chem. Soc., 2009, 131, 13208–13209.
13 (a) J. Lhomme, F. Constant and M. Demeunynck, Biopolymers,
1999, 52, 65–83; (b) C. Zhao, Q. Dai, T. Seino, Y. Y. Cui,
S. Nishizawa and N. Teramae, Chem. Commun., 2006, 1185–1187.
14 (a) H. Yan, S. H. Park, G. Finkelstein, J. H. Reif and
T. H. LaBean, Science, 2003, 301, 1882–1884; (b) J. H. Lee,
N. Y. Wong, L. H. Tan, Z. Wang and Y. Lu, J. Am. Chem.
Soc., 2010, 132, 8906–8908; (c) R. Fan, O. Vermesh, A. Srivastava,
B. K. Yen, L. Qin, H. Ahmad, G. A. Kwong, C. C. Liu, J. Gould,
L. Hood and J. R. Heath, Nat. Biotechnol., 2008, 26, 1373–1378;
(d) R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte and
J. R. Heath, J. Am. Chem. Soc., 2007, 129, 1959–1967;
(e) C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola and S. Jiang,
Anal. Chem., 2004, 76, 6967–6972; (f) W. Shen, H. Zhong, D. Neff
and M. L. Norton, J. Am. Chem. Soc., 2009, 131, 6660–6661.
15 (a) M. Niemeyer, R. Wacker and M. Adler, Nucleic Acids Res., 2003,
31, 90e; (b) L. Fruk, J. Muller, G. Weber, A. Narvaez, E. Dominguez
and C. M. Niemeyer, Chem.–Eur. J., 2007, 13, 5223–5231.
16 Z. Zhang, J. Zhou, A. Tang, Z. Wu, G. Shen and R. Yu, Biosens.
Bioelectron., 2010, 25, 1953–1957.
HRP oxidizes hydroquinone (H2Q) to benzoquinone (BQ) and
ALP produces p-aminophenol (PAP) from p-aminophenol
phosphate (PAPP). Both catalytic actions were evaluated by
reducing BQ and oxidizing PAP with the microelectrode of a
scanning electrochemical microscope (SECM) (Fig. 3a).16,18
As shown in Fig. 3b and c, these enzymes were found to
actually promote reactions at exact DNA spots. In particular,
HRP/ALP-CL2-N succeeded in accommodating both the enzyme
binding sites on the single molecule. On the other hand, the
enzymatic productions from the PM-bio and PM-F were signifi-
cantly decreased to 67% and 38% of the corresponding ICL
duplexes (Fig. S10 in ESIw). This result suggests that a part of
standard duplexes was subject to dissociation into single strands
during the chip preparation or enzyme reactions. The cross-linked
duplexes provided stable DNA scaffolds for enzyme reactions.
In conclusion, a pair of AP sites formed in double-stranded
DNAs can be linked with a single bis(aminooxy) molecule.
This ICL distinctly stabilizes double strands by covalently
17 C. A. Wijayawardhana, G. Wittstock, H. B. Halsall and
W. R. Heineman, Anal. Chem., 2000, 72, 333–338.
18 (a) A. A. Gorodetsky, W. J. Hammond, M. G. Hill, K. Slowinski
and J. K. Barton, Langmuir, 2008, 24, 14282–14288;
(b) I. Palchetti, S. Laschi, G. Marrazza and M. Mascini, Anal.
Chem., 2007, 79, 7206–7213.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2143–2145 2145