Full Paper
[17]
[18]
[19]
[41] a) D. Siebler, C. Förster, K. Heinze, Eur. J. Inorg. Chem. 2010, 3986–3992;
b) T. Tagg, H. G. Kjaergaard, J. R. Lane, C. J. McAdam, B. H. Robinson, J.
Simpson, Organometallics 2015, 34, 2662–2666.
[42] J. Disinger, S. E. Manahan, Anal. Lett. 1982, 15, 1017–1029.
[43] P. M. Tolstoy, B. Koeppe, G. S. Denisov, H.-H. Limbach, Angew. Chem. Int.
Ed. 2009, 48, 5745–5747; Angew. Chem. 2009, 121, 5855–5858.
[44] R. J. LeSuer, C. Buttolph, W. E. Geiger, J. Organomet. Chem. 2004, 76,
6395–6041.
M. H. V. Huynh, T. J. Meyer, Chem. Rev. 2007, 107, 5004–5064.
J. L. Dempsey, J. R. Winkler, H. B. Gray, Chem. Rev. 2010, 110, 7024–7039.
F. Lachaud, A. Quaranta, Y. Pellegrin, P. Dorlet, M.-F. Charlot, S. Un, W.
Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2005, 44, 1536–1540; Angew.
Chem. 2005, 117, 1560–1564.
J. Bonin, M. Robert, Photochem. Photobiol. 2011, 87, 1190–1203.
L. Hammarström, S. Styring, Energy Environ. Sci. 2011, 4, 2379–2388.
[20]
[21]
[22]
C. J. Gagliardi, A. K. Vannucci, J. J. Concepcion, Z. Chen, T. J. Meyer, Energy
Environ. Sci. 2012, 5, 7704–7717.
[45] N. Camire, U. T. Mueller-Westerhoff, W. E. Geiger, J. Organomet. Chem.
2001, 639, 823–826.
[23]
[24]
[25]
A. Migliore, N. F. Polizzi, M. J. Therien, D. N. Beratan, Chem. Rev. 2014,
114, 3381–3465.
[46] W. L. Mock, D. C. Y. Chua, J. Chem. Soc. Perkin Trans. 2 1995, 2069–2074.
[47] S. Panagiota, M. Louloudi, Y. Deligiannakis, Chem. Phys. Lett. 2009, 472,
85–89.
[48] P. Neta, R. W. Fessenden, J. Phys. Chem. 1974, 78, 523–529.
[49] L. W. Kiruri, L. Khachatryan, B. Dellinger, S. Lomnicki, Environ. Sci. Technol.
2014, 48, 2212–2217.
[50] J. W. Whittaker, Chem. Rev. 2003, 103, 2347–2363.
[51] F. Thomas, O. Jarjayes, H. Jamet, S. Hamman, E. Saint-Aman, C. Duboc,
J.-L. Pierre, Angew. Chem. Int. Ed. 2004, 43, 594–597; Angew. Chem. 2004,
116, 604–607.
[52] T. Maki, Y. Araki, Y. Ishida, J. Am. Chem. Soc. 2001, 123, 3371–3372.
[53] S. Vanicek, H. Kopacka, K. Wurst, S. Vergeiner, L. Oehninger, I. Ott, B.
Bildstein, Z. Anorg. Allg. Chem. 2015, 641, 1282–1292.
[54] M. Breza, J. Mol. Struct. 2004, 683, 167–169.
M. Sugiura, S. Ogami, M. Kusumi, S. Un, F. Rappaport, A. Boussac, J. Biol.
Chem. 2012, 287, 13336–13347.
R. Wanke, L. Benisvy, M. L. Kuznetsov, M. F. C. Guedes Da Silva, A. J. L.
Pombeiro, Chem. Eur. J. 2011, 17, 11882–11892.
A. Neidlinger, T. Kienz, K. Heinze, Organometallics 2015, 34, 5310–5320.
K. Heinze, M. Schlenker, Eur. J. Inorg. Chem. 2004, 2974–2988.
a) K. Heinze, D. Siebler, Z. Anorg. Allg. Chem. 2007, 633, 2223–2233; b) D.
Siebler, M. Linseis, T. Gasi, L. M. Carrella, R. F. Winter, C. Förster, K. Heinze,
Chem. Eur. J. 2011, 17, 4540–4551.
[26]
[27]
[28]
[29] D. Siebler, C. Förster, K. Heinze, Dalton Trans. 2011, 40, 3558–3575.
[30] H. Huesmann, C. Förster, D. Siebler, T. Gasi, K. Heinze, Organometallics
2012, 31, 413–427.
[31] M. B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 1968, 10, 247–422.
[32] a) S. Fukuzumi, K. Okamoto, Y. Yoshida, H. Imahori, Y. Araki, O. Ito, J. Am.
Chem. Soc. 2003, 125, 1007–1013; b) S. Fukuzumi, Y. Yoshida, K. Oka-
moto, H. Imahori, Y. Araki, O. Ito, J. Am. Chem. Soc. 2002, 124, 6794–
6795.
[33] a) G. Jaouen, S. Top, A. Vessieres, G. Leclercq, M. McGlinchey, Curr. Med.
Chem. 2004, 11, 2505–2517; b) E. Hillard, A. Vessières, L. Thouin, G. Jao-
uen, C. Amatore, Angew. Chem. Int. Ed. 2006, 45, 285–290; Angew. Chem.
2006, 118, 291–296; c) A. Nguyen, S. Top, P. Pigeon, A. Vessières, E. A.
Hillard, M. A. Plamont, M. Huché, C. Rigamonti, G. Jaouen, Chem. Eur. J.
2009, 15, 684–696; d) D. Hamels, P. M. Dansette, E. A. Hillard, S. Top, A.
Vessières, P. Herson, G. Jaouen, D. Mansuy, Angew. Chem. Int. Ed. 2009,
48, 9124–9126; Angew. Chem. 2009, 121, 9288–9290; e) D. Plażuk, A.
Vessières, E. A. Hillard, O. Buriez, E. Labbé, P. Pigeon, M.-A. Plamont, C.
Amatore, J. Zakrzewski, G. Jaouen, J. Med. Chem. 2009, 52, 4964–4967.
[34] B. Bildstein, M. Malaun, H. Kopacka, K. Wurst, K.-H. Ongania, G. Oprom-
olla, P. Zanello, Organometallics 1999, 18, 4325–4336.
[55] P. Pelikán, L. Omelka, K. Brudíková, M. Breza, J. Mol. Struct. 2003, 624,
251–255.
[56] L. Omelka, J. Kováčová, Magn. Reson. Chem. 1994, 32, 525–531.
[57] S. Terabe, R. Konaka, J. Chem. Soc. Perkin Trans. 2 1972, 2163–2172.
[58] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.
[59] SMART Data Collection Software for the SMART System, various versions,
Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2000; SAINT-Plus
Data Processing Software for the SMART System, various versions, Bruker
Analytical X-ray Instruments, Inc., Madison, WI, 2000.
[60] R. H. Blessing, Acta Crystallogr., Sect. A 1995, 51, 33–38.
[61] G. M. Sheldrick, SHELXTL, version 5.1, Bruker AXS, Madison, WI, 1998.
[62] G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.
[63] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
[64] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577.
[65] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
[66] F. Neese, Chem. Phys. Lett. 2000, 325, 93–98.
[67] T. H. Fischer, J. Almlof, J. Phys. Chem. 1992, 96, 9768–9774.
[68] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597–
4610.
[35] D. Kanamori, A. Furukawa, T. Okamura, H. Yamamoto, N. Ueyama, Org.
Biomol. Chem. 2005, 3, 1453–1459.
[69] C. van Wüllen, J. Chem. Phys. 1998, 109, 392.
[70] D. A. Pantazis, X. Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput.
[36] N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
[37] Y. Kondo, in: Supberbases for Organic Synthesis (Ed.: T. Ishikawa), Wiley,
Chichester, UK, 2009, p. 145–185.
2008, 4, 908–919.
[71] S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys.
Chem. A 2006, 110, 2235–2245.
[38] R. Prins, Mol. Phys. 1970, 19, 603–620.
[39] G. R. Eaton, S. S. Eaton, D. P. Barr, R. T. Weber, Quantitative EPR, Springer,
Vienna/New York, 2010.
Received: December 22, 2015
[40] B. S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 2002, 31, 168–184.
Published Online: February 12, 2016
Eur. J. Inorg. Chem. 2016, 1274–1286
1286
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim