Li+ and Na+) and standard solutions (10−1 M to 10−3 M) in dry
THF were added to record the UV-vis and fluorescence spectra.
Synthesis of compound 3
A mixture of compound 1 (0.10 g, 0.08 mmol) and N,N-
dimethylaminocinnamaldehyde (0.03 g, 0.17 mmol) in a
1 : 1 mixture of dry dichloromethane and dry methanol was
refluxed for 24 h. After completion of the reaction, the solvent
was evaporated and the residue left was crystallized from CHCl3/
CH3OH to give compound 3 in 78% yield; m.p. 212 °C; IR
(KBr) νmax = 1602 cm−1; 1H NMR (CDCl3, 300 MHz): δ = 0.62
(t, J = 9 Hz, 6 H, CH3), 1.02–1.09 (m, 4 H, CH2), 1.26 (s, 18 H,
C(CH3)3), 1.28 (s, 18 H, C(CH3)3), 2.99 (s, 12 H, CH3), 3.05 (t,
4H, J = 9, NCH2) 3.82 (t, 4 H, J = 9 Hz, OCH2), 4.14 (t, J = 6
Hz, 4 H, OCH2), 6.63–6.74 (m, 8 H, Ar-H, CH), 7.31–7.34 (m,
8 H, Ar-H), 7.41 (s, 4 H, Ar-H), 7.87 (d, J = 9 Hz, 2 H, HCvN)
ppm. 13C NMR (CDCl3, 300 MHz): δ = 10.08, 22.10, 31.20,
31.50, 34.19, 40.02, 59.00, 67.25, 70.07, 112.06, 123.59,
123.80, 127.64, 127.80, 128.01, 128.68, 142.29, 145.50, 151.04,
Fig. 9 Fluorescence spectra showing the reversibility of Ag+ coordi-
nation to receptor 3 by Cl− ions; blue line, free 3 (1 μM), red line, 3 +
30 μM Ag+, green line, 3 + 30 μM Ag+ + 30 μM Cl−, orange line, 3 +
30 μM Ag+ + 30 μM Cl− + 80 μM Ag+ in THF; λex = 360 nm.
behaviour of chemosensor 3. However, no precipitation was
observed during the reversibility experiment.
156.45, 157.18, 164.29. MS ES+, m/z:
=
1205.6;
C72H92N4O4S4: calcd. C 71.72, H 7.69, N 4.65; Found C 71.81,
H 7.42, N 4.29.
Conclusions
In conclusion, we have designed and synthesized a receptor
based on the 1,3-alternate conformation of thiacalix[4]arene pos-
sessing two dimethyliminocinnamaldehyde moieties. The Ag+
ions bind with imino nitrogens of receptor 3 and thus, preferen-
tially enhance the intramolecular charge transfer process from
nitrogen atoms of the dimethylamino moiety to the imino moiety
resulting in the significant spectral shift in fluorescence emission
with a detection limit up to the nanomolar range. This type of
emission shift is not observed in the case of any other transition
or alkali metal ions.
Acknowledgements
We are thankful to CSIR (New Delhi) (Ref. No. 01 (2326)/09/
EMR-II) for financial support, N. K. is thankful to CSIR (New
Delhi) for a junior research fellowship and Guru Nanak Dev
University for laboratory facilities.
Notes and references
1 (a) M. Kazuyuki, H. Nobuo, K. Takatoshi, K. Yuriko, H. Osamu,
I. Yashihisa and S. Kiyoko, Clin. Chem. (Washington, D.C.), 2001, 47,
763; (b) A. T. Wan, R. A. Conyers, C. J. Coombs and J. P. Masterton,
Clin. Chem. (Washington, D.C.), 1991, 37, 1683.
Experimental
2 H. I. Scheinberg, Metals and their Compounds in the Environment:
Occurrence, Analysis and Biological Relevance, ed. E. Merian, VCH
New York, 1991.
General information
All reagents were purchased from Aldrich and were used without
further purification. THF was dried over sodium and benzophe-
none and kept over molecular sieves overnight before use. UV-
vis spectra were recorded on a SHIMADZU UV-2450 spectro-
photometer, with a quartz cuvette (path length 1 cm). The cell
holder was thermostatted at 25 °C. The fluorescence spectra were
recorded with a VARIAN CARY ECLIPSE spectrofluorimeter.
1H spectra were recorded on a JEOL-FT NMR-AL 300 MHz
spectrophotometer using CDCl3/CD3CN as solvent and tetra-
methylsilane as internal standards. Data are reported as follows:
chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet,
t = triplet, m = multiplet, br = broad singlet), coupling constants
J (Hz), integration and interpretation.
3 (a) K. B. Holt and A. J. Bard, Biochemistry, 2005, 44, 13214;
(b) S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr and A. D. Russell, Lett.
Appl. Microbiol., 1997, 25, 279; (c) C. A. Flemming, F. G. Ferris,
T. J. Beveridge and G. W. Bailey, Appl. Environ. Microbiol., 1990, 56, 3191.
4 I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci., 2004, 275, 177.
5 A. D. Russell and W. B. Hugo, Prog. Med. Chem., 1994, 31, 351.
6 (a) M. A. Butkus, M. P. Labare, J. A. Starke, K. Moon and M. Talbot,
Appl. Environ. Microbiol., 2004, 70, 2848; (b) H. G. Petering, Phar-
maolc. Ther. A, 1976, 1, 127.
7 (a) D. Schildkraut, P. Dao, J. Twist, A. Davis and K. Robillard, Environ.
Toxicol. Chem., 1998, 17, 642; (b) A. Ceresa, A. Radu, S. Peper,
E. Bakker and E. Pretsch, Anal. Chem., 2002, 74, 4027; (c) K. Kimura,
S. Yajima, K. Tatsumi, M. Yokoyama and M. Oue, Anal. Chem., 2000,
72, 5290; (d) S. Chung, W. Kim, S. B. Park, I. Yoon, S. S. Lee and
D. D. Sung,, Chem. Commun., 1997, 965.
8 (a) R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419;
(b) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515; (c) A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302;
(d) J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780.
UV-vis and fluorescence titrations
9 (a) I. Akoi, T. Sakaki and S. J. Shinkai, J. Chem. Soc., Chem. Commun.,
1992, 730; (b) J. H. Bu, Q. Y. Zheng, C. F. Chen and Z. T Huang, Org.
Lett., 2004, 6, 3301; (c) S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee
and J. S. Kim, Org. Lett., 2005, 7, 4839; (d) V. Böhmer, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 713; (e) B. Schazmann, N. Alhashimy and
UV-vis and fluorescence titrations were performed on 10.0 μM
and 1.0 μM solutions of ligand in dry THF respectively. Typi-
cally, aliquots of freshly prepared metal perchlorates (Ag+, Hg2+,
Fe2+, Fe3+, Zn2+, Cu2+, Ni2+, Co2+, Cd2+, Pb2+, Ba2+, Mg2+, K+,
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 1769–1774 | 1773