ORGANIC
LETTERS
2012
Vol. 14, No. 5
1187–1189
Trifluoroacetic Anhydride Promoted
Tandem Conjugate Addition of Boronic
Acids/Acetal Ring Opening†
ꢀ
Silvia Roscales and Aurelio G. Csaky*
´
Laboratorio de Sıntesis Organica, Unidad de Cartografıa Cerebral,
Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain
ꢀ
´
Received November 24, 2011
ABSTRACT
A new stereoselective tandem reaction consisting of the metal-free conjugate addition of boronic acids followed by an intramolecular ring opening
of a cyclic acetal has been disclosed. Optically pure polysubstituted tetrahydropyrans have been synthesized diastereoselectively by this new
reaction. Two new CÀC bonds and up to three stereocenters are formed in a single step, allowing the generation of quaternary stereocenters.
The conjugate addition of carbon nucleophiles to electron-
deficient alkenes constitutes one of the most relevant syn-
thetic methods for CÀC bond formation.1 Among the dif-
ferent reagents that have been developed for this purpose,
boronic acids have attracted a great deal of attention due
to their low toxicity, thermal stability, and ample com-
patibility with functional groups that are normally labile
to other organometallic nucleophiles.2 Direct conjugate
addition of boronic acids is normally precluded by their
low nucleophilicity, and activation is normally required.
This has been achieved by transmetalation to transition
metals, mainly Rh and Pd, in catalytic cycles.3,4 Although
less common, promotion of the conjugate addition reac-
tion of boronic acids by organic molecules has also been
(4) For recent reviews on Pd-catalyzed reactions, see: (a) Yamamoto,
Y.; Nishikata, T.; Miyaura, N. J. Synth. Org. Chem. Jpn. 2006, 64, 1112.
(b) Gutnov, A. Eur. J. Org. Chem. 2008, 4547. (c) Yamamoto, Y.;
Nishikata, T.; Miyaura, N. Pure Appl. Chem. 2008, 80, 807. (d) Miyaura,
N. Synlett 2009, 2039.
†
ꢀ
Dedicated to Prof. Carmen Najera (Universidad de Alicante) in honor of
her 60th birthday.
(1) For recent reviews, see: (a) Carreira, E. M.; Kvaerno, L. In
Classics in Stereoselective Synthesis; Wiley-VCH: Weinheim, 2009; Chap-
ter 12, p 389. (b) Thaler, T.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48,
645. (c) Jerphagnon, T.; M. Pizzuti, G.; Minnaard, A. J.; Feringa, B. L.
Chem. Soc. Rev. 2009, 38, 1039. (d) Hawner, C.; Alexakis, A. Chem.
Commun. 2010, 46, 7295.
(5) (a) Hara, S.; Hyuga, S.; Aoyama, M.; Sato, M.; Suzuki, A.
Tetrahedron Lett. 1990, 31, 247. (b) Hara, S.; Shudoh, H.; Ishimura,
S.; Suzuki, A. Bull. Chem. Soc. Jpn. 1998, 71, 2403.
(6) (a) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127, 3244.
(b) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2007, 129, 4908.
(c) Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2006, 128,
3116. (d) Paton, R. S.; Goodman, J. M.; Pellegrinet, S. C. J. Org. Chem.
2008, 73, 5078. (e) Kim, S.-G. Tetrahedron Lett. 2008, 49, 6148. (f) Lee, S.;
MacMillan, D.W. C. J. Am. Chem. Soc. 2007, 129, 15438. (g) Inokuma
T.; Takasu, K.; Sakaeda, T.; Takemoto, Y. Org. Lett. 2009, 11, 2425.
(h) Sugiura, M.; Tokudomi, M.; Nakajima, M. Chem. Commun. 2010,
46, 7799. (i) Lundy, B. J.; Jansone-Popova, S.; May, J. A. Org. Lett.
2011, 13, 4958.
(2) (a) Hall, D. G. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, 2005; Chapter 1, p 1. (b) Ishiyama, T.; Miyaura, N. In Boronic
Acids; Hall, D. G., Ed.: Wiley-VCH: Weinheim, 2005; Chapter 2, p 101.
(c) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535. (d) Primas, N.;
Bouillon, A.; Rault, S. Tetrahedron 2010, 66, 8821. (e) Molander, G. A.;
Trice, S. L. J.; Dreher, S. D. J. Am. Chem. Soc. 2010, 132, 17701.
(3) For recent reviews on Rh-catalyzed reactions, see: (a) Fagnou,
K.; Lautens, M. Chem. Rev. 2003, 103, 169. (b) Hayashi, T.; Yamasaki,
K. Chem. Rev. 2003, 103, 2829. (c) Hayashi, T. Pure Appl. Chem. 2004,
76, 465. (d) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13. (e) Yoshida,
K.; Hayashi, T. In Modern Rhodium-Catalyzed Organic Reactions; Evans,
P. A., Ed.: Wiley-VCH: Weinheim, 2005; Chapter 3, p 55. (f) Yoshida, K.;
Hayashi, T. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005;
Chapter 4, p 171. (g) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.; Frost,
C. G. Chem. Soc. Rev. 2010, 39, 2093. (h) Hargrave, J. D.; Allen, J. C.;
Frost, C. G. Chem. Asian J. 2010, 5, 386. (i) Magano, J.; Dunetz, J. M.
Chem. Rev. 2011, 111, 2177.
(7) See for example: (a) Seiple, I. B.; Rodrıguez, R. A.; Gianastassio,
R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. 2010, 132,
13194. (b) Dickschat, A.; Studer, A. Org. Lett. 2010, 12, 3972. (c) Sorin,
G.; Martınez Mallorquın, R.; Contie, Y.; Baralle, A.; Mallacria, M.;
Goddard, J.-P.; Fensterbank, L. Angew. Chem., Int. Ed. 2010, 49, 8721.
(d) Molander, G. A.; Colombel, V.; Braz, V. A. Org. Lett. 2011, 13, 1852.
€
(e) Luthy, M.; Darmency, V.; Renaud, P. Eur. J. Org. Chem. 2011, 547.
(f) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianastassio, R.; Del Bel,
M.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292 and references
therein.
r
10.1021/ol300272j
2012 American Chemical Society
Published on Web 02/16/2012