the experimentally observed acceleration of charge transfer
rates by a factor of 3.5 is remarkable.
26 B. Albinsson, M. P. Eng, K. Pettersson and M. U. Winters, Phys.
Chem. Chem. Phys., 2007, 9, 5847.
27 B. Albinsson and J. Martensson, J. Photochem. Photobiol., C,
2008, 9, 138.
28 W. R. Browne, N. M. O’Boyle, J. J. McGarvey and J. G. Vos,
Chem. Soc. Rev., 2005, 34, 641.
29 F. Scandola, M. T. Indelli, C. Chiorboli and C. A. Bignozzi, Top.
Curr. Chem., 1990, 158, 73.
30 A. C. Benniston and A. Harriman, Chem. Soc. Rev., 2006, 35,
169.
31 H. A. Meylemans, C. F. Lei and N. H. Damrauer, Inorg. Chem.,
2008, 47, 4060.
32 H. M. McConnell, J. Chem. Phys., 1961, 35, 508.
33 M. N. Paddon-Row, Acc. Chem. Res., 1994, 27, 18.
34 M. N. Paddon-Row, A. M. Oliver, J. M. Warman, K. J. Smit,
M. P. Dehaas, H. Oevering and J. W. Verhoeven, J. Phys. Chem.,
1988, 92, 6958.
The bottom line is that in our dyads a 0.2 eV increase in
driving-force has a stronger influence on charge transfer rates
than the 0.6 eV decrease in the donor–bridge energy gap
associated with the replacement of a p-xylene spacer by a
p-dimethoxybenzene unit. However, this is because the
absolute magnitude of the barrier for hole injection into the
bridge is large for the particular systems investigated here. It is
conceivable that for other donor–bridge–acceptor combina-
tions with inherently smaller injection barriers, variations in
donor–bridge energy gaps outweigh the effect of small driving-
force changes—even in the tunneling regime, before hopping
processes become energetically viable.
35 M. P. Eng and B. Albinsson, Angew. Chem., Int. Ed., 2006,
45, 5626.
36 M. P. Eng and B. Albinsson, Chem. Phys., 2009, 357, 132.
37 K. Kilsa, J. Kajanus, A. N. Macpherson, J. Martensson and
B. Albinsson, J. Am. Chem. Soc., 2001, 123, 3069.
38 J. Wiberg, L. J. Guo, K. Pettersson, D. Nilsson, T. Ljungdahl,
J. Martensson and B. Albinsson, J. Am. Chem. Soc., 2007,
129, 155.
39 K. Pettersson, J. Wiberg, T. Ljungdahl, J. Martensson and
B. Albinsson, J. Phys. Chem. A, 2006, 110, 319.
40 O. S. Wenger, Acc. Chem. Res., 2011, 44, 25.
41 O. S. Wenger, Chem. Soc. Rev., 2011, 40, 3538.
42 S. E. Miller, A. S. Lukas, E. Marsh, P. Bushard and
M. R. Wasielewski, J. Am. Chem. Soc., 2000, 122, 7802.
Acknowledgements
This work was supported by the Swiss National Science
Foundation through grant number 200021-117578 and the
Deutsche Forschungsgemeinschaft through grant number
INST 186/872-1.
Notes and references
1 V. Balzani, Electron transfer in chemistry, VCH Wiley, Weinheim,
2001.
43 C. Lambert, G. Noll and J. Schelter, Nat. Mater., 2002, 1, 69.
¨
44 D. Hanss, M. E. Walther and O. S. Wenger, Chem. Commun.,
2010, 46, 7034.
45 M. E. Walther and O. S. Wenger, ChemPhysChem, 2009, 10,
1203.
46 J. Hankache and O. S. Wenger, Chem. Rev., 2011, 111, 5138.
47 N. Belfrekh, C. Dietrich-Buchecker and J.-P. Sauvage, Tetrahedron
Lett., 2001, 42, 2779.
2 A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and
A. Von Zelewsky, Coord. Chem. Rev., 1988, 84, 85.
3 O. S. Wenger, Coord. Chem. Rev., 2009, 253, 1439.
4 C. J. da Cunha, E. S. Dodsworth, M. A. Monteiro and A. B.
P. Lever, Inorg. Chem., 1999, 38, 5399.
5 R. Frank, G. Greiner and H. Rau, Phys. Chem. Chem. Phys., 1999,
1, 3481.
48 V. Hensel and A. D. Schluter, Liebigs Ann., 1997, 303.
¨
49 V. Hensel, K. Lutzow, J. Jacob, K. Gessler, W. Saenger and
6 R. Frank and H. Rau, Helv. Chim. Acta, 2001, 84, 3837.
7 D. G. McCafferty, D. A. Friesen, E. Danielson, C. G. Wall,
M. J. Saderholm, B. W. Erickson and T. J. Meyer, Proc. Natl.
Acad. Sci. U. S. A., 1996, 93, 8200.
8 D. R. Striplin, S. Y. Reece, D. G. McCafferty, C. G. Wall,
D. A. Friesen, B. W. Erickson and T. J. Meyer, J. Am. Chem.
Soc., 2004, 126, 5282.
A. D. Schluter, Angew. Chem., Int. Ed., 1997, 36, 2654.
¨
50 M. E. Walther and O. S. Wenger, Inorg. Chem., 2011, 50,
10901.
51 D. Hanss, J. C. Freys, G. Bernardinelli and O. S. Wenger, Eur. J.
Inorg. Chem., 2009, 4850.
52 A. Bouillon, A. S. Voisin, A. Robic, J. C. Lancelot, V. Collot and
S. Rault, J. Org. Chem., 2003, 68, 10178.
53 M. S. Jensen, R. S. Hoerrner, W. J. Li, D. P. Nelson, G. J. Javadi,
P. G. Dormer, D. W. Cai and R. D. Larsen, J. Org. Chem., 2005,
70, 6034.
9 F. Vogtle, M. Plevoets, M. Nieger, G. C. Azzellini, A. Credi,
¨
L. De Cola, V. De Marchis, M. Venturi and V. Balzani, J. Am.
Chem. Soc., 1999, 121, 6290.
10 K. Sumi, M. Furue and S. Nozakura, Photochem. Photobiol., 1985,
42, 485.
54 D. Hanss and O. S. Wenger, Inorg. Chem., 2008, 47, 9081.
55 D. Hanss and O. S. Wenger, Inorg. Chem., 2009, 48, 671.
56 B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978,
17, 3334.
57 D. M. Roundhill, Photochemistry and Photophysics of Metal
Complexes, Plenum Press, New York, 1994.
58 K. S. Schanze, D. B. MacQueen, T. A. Perkins and L. A. Cabana,
Coord. Chem. Rev., 1993, 122, 63.
59 K. S. Schanze, L. A. Lucia, M. Cooper, K. A. Walters, H. F. Ji and
O. Sabina, J. Phys. Chem. A, 1998, 102, 5577.
11 J. Otsuki, H. Ogawa, N. Okuda, K. Araki and M. Seno, Bull.
Chem. Soc. Jpn., 1997, 70, 2077.
12 L. Mishra, C. S. Choi and K. Araki, Chem. Lett., 1997, 447.
13 Y. Pellegrin, R. J. Forster and T. E. Keyes, Inorg. Chim. Acta,
2009, 362, 1715.
14 A. Babaei, P. A. Connor, A. J. McQuillan and S. Umapathy,
J. Chem. Educ., 1997, 74, 1200.
15 S. L. Mecklenburg, D. G. McCafferty, J. R. Schoonover,
B. M. Peek, B. W. Erickson and T. J. Meyer, Inorg. Chem.,
1994, 33, 2974.
60 M. E. Walther and O. S. Wenger, Dalton Trans., 2008, 6311.
61 J. C. Freys and O. S. Wenger, Eur. J. Inorg. Chem., 2010, 5509.
62 S. Boyde, G. F. Strouse, W. E. Jones and T. J. Meyer, J. Am.
Chem. Soc., 1989, 111, 7448.
63 G. J. Wilson, A. Launikonis, W. H. F. Sasse and A. W. H. Mau,
J. Phys. Chem. A, 1997, 101, 4860.
64 M. D. Ward, Coord. Chem. Rev., 2006, 250, 3128.
65 R. T. F. Jukes, V. Adamo, F. Hartl, P. Belser and L. De Cola,
Coord. Chem. Rev., 2005, 249, 1327.
16 K. A. Opperman, S. L. Mecklenburg and T. J. Meyer, Inorg.
Chem., 1994, 33, 5295.
17 J. Hankache and O. S. Wenger, Chem. Commun., 2011, 47, 10145.
18 M. R. Wasielewski, Chem. Rev., 1992, 92, 435.
19 P. Y. Chen and T. J. Meyer, Chem. Rev., 1998, 98, 1439.
20 P. F. Barbara, T. J. Meyer and M. A. Ratner, J. Phys. Chem., 1996,
100, 13148.
21 H. B. Gray and J. R. Winkler, Proc. Natl. Acad. Sci. U. S. A., 2005,
102, 3534.
22 H. B. Gray and J. R. Winkler, Annu. Rev. Biochem., 1996, 65,
537.
66 B. Schlicke, P. Belser, L. De Cola, E. Sabbioni and V. Balzani,
J. Am. Chem. Soc., 1999, 121, 4207.
23 J. R. Winkler and H. B. Gray, Chem. Rev., 1992, 92, 369.
24 B. Giese, Annu. Rev. Biochem., 2002, 71, 51.
25 M. Cordes and B. Giese, Chem. Soc. Rev., 2009, 38, 892.
67 N. J. Turro, Molecular Photochemistry, New York, Amsterdam,
1967.
68 A. Weller, Z. Phys. Chem. (Leipzig), 1982, 133, 93.
c
This journal is the Owner Societies 2012
Phys. Chem. Chem. Phys., 2012, 14, 2685–2692 2691