JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
P.; Baker, G. L.; Smith III, M. R. J. Am. Chem. Soc. 2000, 122,
1552–1553; (c) Ovitt, T. M.; Coates, G. W. J. Polym. Sci. Part A:
Polym. Chem. 2000, 38, 4686–4692; (d) Ovitt, T. M.; Coates, G.
W. J. Am. Chem. Soc. 2001, 124, 1316–1326; (e) Zhong, Z.; Dijk-
stra, P. J.; Feijen, J. Angew. Chem. Int. Ed. 2002, 41,
4510–4513; (f) Zhong, Z.; Dijkstra, P. J.; Feijen, J. J. Am. Chem.
Soc. 2003, 125, 11291–11298; (g) Hormnirun, P.; Marshall, E. L.;
Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem.
Soc. 2004, 126, 2688–2689; (h) Chisholm, M. H.; Gallucci, J. C.;
Quisenberry, K. T.; Zhou, Z. Inorg. Chem. 2008, 47, 2613–2624;
(i) Du, H.; Velders, A. H.; Dijkstra, P. J.; Sun, J.; Zhong, Z.;
Chen, X.; Feijen, J. Chem. Eur. J. 2009, 15, 9836–9845.
bearing nonchiral ligand. However, the real active structures
of the aluminum complexes in the reaction mixture are still
not clear. Additionally, undefined microstructures in the NMR
spectra for PDLLA initiated by 5 and 6 were detected, and
further studies examining the structures of the polymers is
required to clarify in more detail the polymerization
mechanism.
CONCLUSIONS
In summary, we have synthesized a series of aluminum alk-
oxides bearing nonchiral or chiral tridentate Schiff-bases,
half-SALEN ligands and achieved controlled stereoselective
polymerization of D,L-LA using these aluminum complexes.
In particular, the Pm value of the PDLLA initiated by 6 was
>0.9, whereas 4b initiated the ROP of D,L-LA efficiently even
at room temperature in a pyridine solution with high stereo-
selectivity. The behavior of these aluminum complexes in
solution, including inversion of the chirality at the aluminum
center, was investigated. The detailed identification of PDLLA
showed the isotactic stereoblock copolymers generated in
these processes. These results indicate the significance of
chiral aluminum centers in stereocontrolled polymerization.
Further studies on detailed identification of the polymers
and new initiator performing higher stereoselectivity, based
on the concept of a racemic metal complex with chirality at
the metal center, are currently in progress.
8 (a) Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Chem.
Eur. J. 2007, 13, 4433–4451; (b) Nomura, N.; Ishii, R.; Akakura,
M.; Aoi, K. J. Am. Chem. Soc. 2002, 124, 5938–5939.
9 (a) Tang, Z.; Yang, Y.; Pang, X.; Hu, J.; Chen, X.; Hu, N.; Jing,
X. J. Appl. Polym. Sci. 2005, 98, 102–108; (b) Pang, X.; Du, H.;
Chen, X.; Zhuang, X.; Cui, D.; Jing, X. J. Polym. Sci. Part A:
Polym. Chem. 2005, 43, 6605–6612; (c) Tang, Z.; Pang, X.; Sun,
J.; Du, H.; Chen, X.; Wang, X.; Jing, X. J. Polym. Sci. Part A:
Polym. Chem. 2006, 44, 4932–4938; (d) Bouyahyi, M.; Grunova,
E.; Marquet, N.; Kirillov, E.; Thomas, C. M.; Roisnel, T.; Car-
pentier, J.-F. Organometallics 2008, 27, 5815–5825; (e) Du, H.;
Velders, A. H.; Dijkstra, P. J.; Zhong, Z. Macromolecules 2009,
42, 1058–1066; (f) Buffet, J.-C.; Okuda, J. Chem. Commun.
2011, 47, 4796–4798.
10 (a) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T.
M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001,
123, 3229–3238; (b) Jensen, T. R.; Breyfogle, L. E.; Hillmyer, M.
A.; Tolman, W. B. Chem. Commun. 2004, 2504–2505.
The authors thank to Masahiko Hayashi in Kobe University,
Japan for giving useful advises concerning the Schiff-base
ligands and complexes. This study was financially supported
in part by a grant for the scientific group research in Fukuoka
University (No. 075006).
11 Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.;
Mitchell, W. S., III; Tumas, A. J.; Hofmeister, G. E. Macromole-
cules 2005, 38, 10336–10340.
12 Marshall, E. L.; Gibson, V. C.; Rzepa, H. S. J. Am. Chem.
Soc. 2005, 127, 6048–6051.
13 Chisholm, M. H.; Patmore, N. J.; Zhou, Z. Chem. Commun.
2005, 127–129.
REFERENCES AND NOTES
14 Chisholm, M. H.; Lin, C.-C.; Gallucci, J. C.; Ko, B.-T. Dalton
Trans 2003, 406–412.
1 (a) O’Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. J. Chem. Soc.
Dalton Trans. 2001, 2215–2224; (b) Dechy-Cabaret, O.; Martin-
Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147–6176; (c) Wu,
J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C. Coord. Chem. Rev. 2006, 250,
602–626; (d) Amgoune, A.; Thomas, C. M.; Carpentier, J.-F. Pure
Appl. Chem. 2007, 79, 2013–2030.
15 Huang, C.-H.; Wang, F.-C.; Ko, B.-T.; Yu, T.-L.; Lin, C.-C.
Macromolecules 2001, 34, 356–361.
16 (a) Iwasa, N.; Fujiki, M.; Nomura K. J. Mol. Cat. A: Chem.
2008, 292, 67–75; (b) Pappalardo, D.; Annunziata, L.; Pellecchia
C. Macromolecules 2009, 42, 6056–6062.
2 (a) Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff,
K. M. Chem. Rev. 1999, 99, 3181–3198; (b) Liu, S.; Maheshwari,
R.; Kiick, K. L. Macromolecules 2009, 42, 3–13.
17 Silvestri, A.; Grisi, F.; Milione, S. J. Polym. Sci. Part A:
Polym. Chem. 2010, 48, 3632–3639.
18 (a) Doherty, S.; Errington, R. J.; Housley, N.; Clegg, W.
Organometallics 2004, 23, 2382–2388; (b) Tsai, Y.-H.; Lin, C.-H.;
Lin, C.-C.; Ko, B.-T. J. Polym. Sci. Part A: Polym. Chem. 2009,
47, 4927–4936; (c) Piedra-Arroni, E.; Brignou, P.; Amgoune, A.;
Guillaume, S. M; Carpentier, J.-F.; Bourissou, D. Chem. Com-
mun. 2011, 47, 9828–9830; (d) Mazzeo, M.; Lamberti, M.;
D’Auria, I.; Milione, S.; Peters, J. C.; Pellecchia, C. J. Polym.
Sci. Part A: Polym. Chem. 2010, 48, 1374–1382.
3 Rokkanen, P.; Bostman, O.; Hirvensalo, E. In Biodegradable
Implants in Fracture Fixation; Leung, K. S.; Hung, K. L.; Leung,
P. C., Eds.; World Scientific: Singapore, 1994; Chapter 4,
pp 189–192.
4 (a) Ikada, Y. In Tissue Engineering for Therapeutic Use 1, Y.
Ikada, Y. Yamaoka, Eds.; American Chemical Society, Washing-
ton DC, 1998, pp 1–14; (b) Ikada, Y. In Wound Close Biomateri-
als and Devices; Chu, C. C.; von Franhofer, L. A.; Greisler, H. P.,
Eds.; CRC: Boca Raton, 1992, pp 317–346; (c) Melchels, F. P.
W.; Feijen, J.; Grijpma, D. W. Biomaterials 2009, 30, 3801–3809.
19 (a) Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.
Organometallics 2009, 28, 1309–1319; (b) Darensbourg, D. J.;
Karroonnirun, O. Inorg. Chem. 2010, 49, 2360–2371.
5 (a) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater.
2000, 12, 1841–1846; (b) Chiellini, E.; Solaro, R. Adv. Mater.
1996, 8, 305–313.
20 Grunova, E.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F. Dalton
Trans. 2010, 39, 6739–6752.
21 Coates, G. W. Chem. Rev. 2000, 100, 1223–1252.
6 (a) Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165–173; (b)
Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486–494.
22 The chiral versions of tridentate Schiff-base ligands are
known to be useful in stereoselective oxidation and addition
reactions, for example, see. (a) Oguni, N.; Miyagi, Y.; Itoh, K.
7 (a) Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A.
Macromol. Chem. Phys. 1996, 197, 2627–2637; (b) Radano, C.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 957–966
965