Table 2 Cascade ring opening/cyclization of aziridinesa,b
We are grateful to National Natural Science Foundation of
China (21172074), the National Basic Research Program of
China (973 Program: 2011CB808600) for financial support.
Notes and references
1 For some recent examples of naturally occurring or biologically active
fused pyrans, see: (a) R. Jansen, B. Kunze, H. Reichenbach and
G. Hofle, Eur. J. Org. Chem., 2002, 917; (b) H. J. Reichenbach, J. Ind.
Microbiol. Biotechnol., 2001, 27, 149; (c) B. Kunze, J. A. Rolf, G. Hofle
and H. J. Reichenbach, J. Antibiot., 2004, 57, 151; (d) H. Zepnik,
A. Pahler, U. Schauer and W. Dekant, Toxicol. Sci., 2001, 59, 59;
(e) G. Appendino, H. C. Ozen and J. Jakupovic, Phytochemistry, 1994,
36, 531; (f) T. Dethoup, L. Manoch, A. Kijjoa, M. Pinto, L. Gales,
A. M. Damas, A. M. S. Silva, G. Eaton and W. J. Herz, J. Nat. Prod.,
2007, 70, 1200; (g) H. Takahashi, M. Kosada, Y. Watanabe, K. Nakade
and Y. Fukuyawa, Bioorg. Med. Chem., 2003, 11, 1781.
Entry
1, Ar =, drc
Product 2d
Product 6
1
2
3
4
5
6
1n, Ph (1.1 : 1)
1n, Ph (3.0 : 1)
1o, 4-ClC6H4 (4.6 : 1)
1p, 4-BrC6H4 (2.4 : 1)
1q, 4-i-PrC6H4 (5.0 : 1)
1r, 4-NO2C6H4 (2.7 : 1)
2n, 80%
2n, 83%
2o, 85%
2p, 89%
2q, 71%
2r, 55%e
6a, 78%
/
6b, 84%
6c, 89%
6d,70%
6e, 42%
a
Reactions of substrates 1n–1r were run with 10 mol% Yb(OTf)3 and
120 mg of activated 4 A MS in DCM at RT within 15 h to afford
2 For some recent examples of naturally occurring or biologically
active isoquolines, see: A. Cappelli, M. Anzini, S. Vomero,
P. G. De Benedetti, M. C. Menziani, G. Giorgi and C. Manzoni,
J. Med. Chem., 1997, 40, 2910.
b
products 2n–2r. Further elimination of crude products 2n–2r was
c
carried out with 1.05 eq. of K2CO3 in DCM, reflux. The numbers in
3 For representative approaches to aromatic fused pyrans and pyridines,
see: (a) S. P. Runyon, L. E. Brieaddy, S. W. Mascarella, J. B. Thomas,
H. A. Navarro, J. L. Howard, G. T. Pollard and F. I. Carroll, J. Med.
Chem., 2010, 53, 5290; (b) W. M. Abdou, A. F. M. Fahmy and
A. A.-A. Kame, Eur. J. Org. Chem., 2002, 1696; (c) J. I. Trujillo and
M. J. Meyers, Bioorg. Med. Chem. Lett., 2007, 17, 4657; (d) R.
Aggarwal, A. A. Brikbeck, C. B. de Koning, R. G. F. Giles, I. R.
Green, S.-H. Li and F. J. Oosthuizan, Tetrahedron Lett., 2003, 44, 4535.
4 For metal mediated C–C bond cleavage of oxiranes, see: (a) T. Wang
and J. Zhang, Chem.–Eur. J., 2011, 17, 86; (b) Z. Chen and L. Wei,
Org. Lett., 2011, 13, 1170; (c) T. Wang, C.-H. Wang and J. Zhang,
Chem. Commun., 2011, 47, 5578; (d) R. Liu, M. Zhang and J. Zhang,
Chem. Commun., 2011, 47, 12870; (e) J. Zhang, Z. Chen, H.-H. Wu
and J. Zhang, Chem. Commun., 2012, 48, 1817.
5 For Lewis acid mediated C–C bond cleavage of aziridines, see:
(a) L. Li, X. Wu and J. Zhang, Chem. Commun., 2011, 47, 5049;
(b) X. Wu, L. Li and J. Zhang, Chem. Commun., 2011, 47, 7824;
(c) L. Li and J. Zhang, Org. Lett., 2011, 13, 5940; (d) P. D. Pohlhaus,
R. K. Bowman and J. S. Johnson, J. Am. Chem. Soc., 2004, 126, 2294;
(e) M. Vaultier and R. Carrie, Tetrahedron Lett., 1978, 14, 1195.
6 For selective examples, see: (a) G.-X. Li and J. Qu, Chem. Commun.,
2010, 46, 2653; (b) S. Nagumo, T. Miura, M. Mizukami, I. Miyoshi,
M. Imai, N. Kawahara and H. Akita, Tetrahedron, 2009, 65, 9884;
(c) B.-F. Sun, R. Hong, Y.-B. Kang and L. Deng, J. Am. Chem. Soc.,
2009, 131, 10384; (d) R. Marcos, C. Rodrıguez-Escrich, C. Herrerıas
and M. A. Pericas, J. Am. Chem. Soc., 2008, 130, 16838; (e) Z.-J. Shi
and C. He, J. Am. Chem. Soc., 2004, 126, 5964.
parentheses refer to the diastereoselectivity of the substrates 2n–2r.
d
e
Isolated yields after column chromatography with 1% HOAc. The
reaction was performed at 40 1C.
different dr ratios (1.1 : 1 vs. 3.0 : 1) afforded 1,2-dihydroiso-
quinoline 2n in almost the same yield (Table 2, entries 1 and 2),
indicating that both diastereoisomers may proceed through
the same reaction pathway. Aziridines 1p–1q bearing weak
electron-withdrawing groups at the para position of the phenyl
ring yielded 1,2-hydroisoquinolines 2p and 2q in higher yields,
while electron-donating i-Pr groups decreased the yield of 2r,
probably owing to the more unstable substrate (Table 2,
entries 3–5). Furthermore, a strong electron-withdrawing
group (–NO2) made 1r less reactive and the corresponding
product 2r was obtained in 55% yield at 40 1C, while a much
higher temperature failed to improve the yield and resulted in
faster decomposition (Table 2, entry 6).
In summary, a general protocol for the first example of
catalytic ring opening/cyclization of aryl oxiranyl ketones and
aryl aziridinyl ketones through selective C–C bond cleavage
rather than the labile C–O/N bond cleavage under mild
conditions has been explored. Synthetically useful aromatic
ring-fused pyrans and isoquinolines can be easily prepared in
excellent yields, which can undergo further transformations
such as alkylation, triflation or elimination. Further studies
including asymmetric catalysis, mechanism and enlargement
of the scope are ongoing in our laboratory and will be reported
in due course.
7 Compounds 2a–2j were obtained with high diastereoselectivities but
have enol form issue, but compounds 2k–2m do not have enol form
issue but have low diastereoselectivities, this difference may be
caused by the different ring-fused system.
8 (a) K. Freter and V. Fuchs, J. Heterocycl. Chem., 1982, 19, 377;
(b) C. A. Demerson, L. G. Humber, T. A. Dobson and R. Martel,
J. Med. Chem., 1975, 18, 189; (c) D. J. Maloney and S. J. Danishefsky,
Angew. Chem., Int. Ed., 2007, 46, 7789.
9 CCDC 842104 (4a)w.
c
2638 Chem. Commun., 2012, 48, 2636–2638
This journal is The Royal Society of Chemistry 2012