1074
B. M. Ruff et al. / Tetrahedron Letters 53 (2012) 1071–1074
The crystal structure of TfNCS, which was recently published in
References and notes
2009,16 revealed that this enzyme harbors a relatively shallow ac-
tive site (Fig. 2), which is consistent with the range of aldehydes
that can be turned over by NCS. With the exception of the residues
that directly interact with the aldehyde functional group, the bind-
ing pocket for substrate 4 appears to consist largely of hydrophobic
interactions that could presumably accommodate substrate ana-
logs 7–21. The aromatic 4-HPAA (4) and dopamine (5) appear to
stack together in the enzyme active site (Fig. 2A), but given the
turnover of aliphatic aldehyde substrates, this stacking interaction
must not be essential. We note that Ile143 appears to be close to
the alpha carbon of 4, and this residue may be responsible for pre-
1. Jackson, T.; Chougule, M. B.; Ichite, N.; Patlolla, R. R.; Sing, M. Cancer Chemother.
Pharmacol. 2008, 63, 117–126.
2. Boyd, M. R.; Hallock, Y. F.; Cardellina, J. H., II; Manfredi, K. P.; Blunt, J. W.;
McMahon, J. B.; Buckheit, R. W., Jr.; Bringmann, G.; Schäffer, M.; Cragg, G. M.;
Thomas, D. W.; Jato, J. G. J. Med. Chem. 1994, 37, 1740–1745.
3. Cheng, P.; Huang, N.; Jiang, Z.-Y.; Zhang, Q.; Zheng, Y.-T.; Chen, J.-J.; Zhang, X.-
M.; Ma, Y.-B. Bioorg. Med. Chem. Lett. 2008, 18, 2475–2478.
4. Abrams, P.; Andersson, K.-E. BJU Int. 2007, 100, 987–1006.
5. (a) Kutchan, T. M. Phytochemistry 1993, 32, 493–506; (b) De-Eknamkul, W.;
Suttipantaa, N.; Kutchan, T. M. Phytochemistry 2000, 55, 177–181; (c)
Samanani, N.; Liscombe, D. K.; Facchini, P. J. Plant J. 2004, 40, 302–313; (d)
Minami, H.; Dubouzet, E.; Iwasa, K.; Sato, F. J. Biol. Chem. 2007, 282, 6274–6282.
6. Pyo, M. K.; Lee, D. H.; Kim, D. H.; Lee, J. H.; Moon, J. C.; Chang, K. C.; Yun-Choi, H.
S. Bioorg. Med. Chem. Lett. 2008, 18, 4110–4114.
7. Tsukiyama, M.; Ueki, T.; Yasuda, Y.; Kikuchi, H.; Akaishi, T.; Okumura, H.; Abe,
K. Planta Med. 2009, 75, 1393–1399.
8. Pesnot, T.; Gershater, M. C.; Ward, J. M.; Hailes, H. C. Chem. Commun. 2011, 47,
3242–3244.
9. (a) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010, 291, 395–456; (b)
Yamada, H.; Kawate, T.; Matsumizu, M.; Nishida, A.; Yamaguchi, K.; Nakagawa,
M. J. Org. Chem. 1998, 63, 6348–6354; (c) Taylor, M. S.; Jacobsen, E. N. J. Am.
Chem. Soc. 2004, 126, 10558–10559; (d) Zhuang, W.; Hazell, R. G.; Jorgensen, K.
A. Org. Biomol. Chem. 2005, 3, 2566–2571; (e) Seayad, J.; Seayad, A. M.; List, B. J.
Am. Chem. Soc. 2006, 128, 1086–1087; (f) Raheem, I. T.; Thiara, P. S.; Jacobsen, E.
N. Org. Lett. 2008, 10, 1577–1580; (g) Sewgobind, N. V.; Wanner, M. J.;
Ingemann, S.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. J. Org. Chem.
2008, 3, 6405–6408.
venting turnover of a-substituted aldehydes. We hypothesize that
the strict amine substrate specificity is not governed by the con-
fines of the enzyme active site, but instead by the reactivity
requirements of the substrate.
In summary, we have showed that the enzyme norcoclaurine
synthase can be used as a biocatalyst to yield a variety of substi-
tuted tetrahydroisoquinolines. We further note that the potential
of the enzyme in a multi-gram scale enantioselective preparation
of (S)-norcoclaurine itself was recently described.11 The easy over-
expression in E. coli and purification on large scale, as well as the
stability of the protein, suggests potential applications in synthetic
chemistry.
10. Pyo, M. K.; Lee, D.-H.; Kim, D.-H.; Lee, J.-H.; Moon, J.-C.; Chang, K.-C.; Yun-Choi,
H. S. Bioorg. Med. Chem. Lett. 2008, 18, 4110–4114.
11. Bonamore, A.; Rovardi, I.; Gasparrini, F.; Baiocco, P.; Barba, M.; Molinaro, C.;
Botta, B.; Boffi, A.; Macone, A. Green Chem. 2010, 12, 1623–1627.
12. Luk, L. Y. P.; Bunn, S.; Liscombe, D. K.; Facchini, P. J.; Tanner, M. E. Biochemistry
2007, 46, 10153–10161.
Acknowledgments
13. Synthesized by Parikh–Doehring oxidation as described previously: Hirose, T.;
Sunazuka, T.; Tian, Z.-H.; Handa, M.; Uchida, R.; Shiomi, K.; Harigaya, Y.;
Omura, S. Heterocycles 2000, 53, 777–784.
14. Aldehyde 25 was synthesized as described in: Hoffmann, S.; Nicoletti, M.; List,
B. J. Am. Chem Soc. 2006, 128, 13074–13075.
We thank the Karlsruhe House of Young Scientists (KHYS) for
financial support. We thank Anne Rüger, KIT, for the synthesis of
aldehyde 25.
15. Bernhardt, P.; Usera, A. R.; O’Connor, S. E. Tetrahedron Lett. 2010, 51, 4400–
4402.
Supplementary data
16. Ilari, A.; Franceschini, S.; Bonamore, A.; Arenghi, F.; Botta, B.; Macone, A.;
Pasquo, A.; Belluci, L.; Boffi, A. J. Biol. Chem. 2009, 284, 897–904.
Supplementary data (experimental procedures and spectral
characterization) associated with this article can be found, in the