and Separations Using Functional Polymers, ed. D. C. Sherrington and
P. Hodge, Wiley, Chichester, 1988.
(iv) Cleavage of PS 39: The cleavage reaction was carried out
on PS 39 (1.000 g, 0.91 mmol) using the procedure described
above. This gave recovered beads (0.550 g), a weight loss of
0.450 g. The purified cleaved product was identified as 31
(0.340 g, 68%). It had Mp 35–37 °C; λmax (ethanol) 309 nm (ε
2 (a) Handbook of Combinatorial Chemistry: Vol
1 and 2, ed.
K. C. Nicolau, R. Hanko and W. Hartwig, Wiley-VCH, Weinheim, 2002;
(b) F. Z. Dörwald,Organic Synthesis on Solid Phase, Wiley-VCH, Wein-
heim, 2002.
3 S. V. Ley, I. R. Baxendale, R. N. Bream, P. S. Jackson, A. G. Leach,
D. A. Longbottom, M. Nesi, J. S. Scott, I. R. Storer and S. J. Taylor,
J. Chem. Soc., Perkin Trans. 1, 2000, 3815–4195.
4 P. Blaney, R. Grigg and V. Sridharan, Chem. Rev., 2002, 102, 2607–
2624.
5 S. Bräse and S. Dahmen, Chem.–Eur. J., 2000, 6, 1899–1905.
6 C. Gil and S. Bräse, Curr. Opin. Chem. Biol., 2004, 8, 230–237.
7 C. A. Briehn, T. Kirschbaum and P. Bäuerle, J. Org. Chem., 2000, 65,
352–359.
8 C. A. Briehn and P. Bäuerle, Synth. Met., 2001, 119, 121–122.
9 C. A. Briehn and P. Bäuerle, J. Comb. Chem., 2002, 4, 457–469.
10 A. C. Spivey, D. J. Turner, M. L. Turner and S. G. Yeates, Synlett, 2004,
111–115.
1
40,100); H NMR (500 MHz, CDCl3, ppm) δ 7.71 (4H; m; H-3
or 4), 7.55 (4H; m; H-3 or 4), 7.29 (2H; d, J = 4.5; H-1), 7.03
(2H; d, J = 4.5; H-2), 2.75 (4H; t, J = 7.7; α-CH2), 1.65 (4H; m;
β-CH2), 1.30 (12H; m; CH2), 0.91 (6H; t, J = 7.7; CH3); MS
(CI): m/z (%): 487 (100), [MH+]. Elemental analysis calculated
for C32H38S2: C, 78.97%, H, 7.88%, S, 13.15%, found: C,
78.80%, H, 7.55%, S, 13.45%.
Synthesis of compound 32. The reactions involved are sum-
marized in Scheme 3.
(i) Suzuki coupling of boronic acid 14 to PS 33: Following the
usual procedure boronic acid 14 (0.86 g, 4.1 mmol) was reacted
with PS 33 (3.000 g, 5.46 mmol). This gave PS 40 (2.280 g) a
weight gain of 0.280 g, corresponding to 3.34 mmol of Suzuki
product (61% yield), equal to 1.46 mmol per g. It had IR (KBr
disc, cm−1) 1632. Elemental analysis for bromine gave 0.20%.
(ii) Bromination of the PS 40: PS 40 (2.000 g, 2.84 mmol)
was brominated using the procedure described for the prep-
aration of PS 38. This gave PS 41 (2.205 g) a weight gain of
0.205 g, corresponding to 2.56 mmol of residues 41 (90%
11 A. N. Cammidge and Z. Ngaini, Chem. Commun., 2004, 1914–1915.
12 J. D. Revell and A. Ganesan, Chem. Commun., 2004, 1916–1917.
13 D. J. Turner, R. Anemian, P. R. Mackie, D. C. Cupertino, S. G. Yeates,
M. L. Turner and A. C. Spivey, Org. Biomol. Chem., 2007, 5, 1752–
1763.
14 V. J. Hruby, S. Wilke, F. Al-Obeidi, D. Jiano and Y. Lin, React. Polym.,
1994, 22, 231–241.
15 P. Hodge and P. Peng, Polymer, 1999, 40, 1871–1879.
16 C. L. Ruddick, P. Hodge, A. Cook and A. J. McRiner, J. Chem. Soc.,
Perkin Trans. 1, 2002, 629–637.
17 W. Li and Y. Lam, J. Comb. Chem., 2005, 7, 644–647.
18 A. Cook, P. Hodge and C. L. Ruddick, Tetrahedron Lett., 2007, 6496–
6499.
19 B. Manzini and P. Hodge, React. Funct. Polym., 2008, 68, 1297–
1306.
yield), equal to 1.17 mmol per g. It had IR (KBr disc, cm−1
)
1629. Elemental analysis for bromine gave 9.75%. This corre-
sponds to a loading of 1.22 mmol of residues 41 per g.
(iii) Suzuki coupling of boronate 26 with PS 41: PS 41
(2.000 g, 2.42 mmol) was reacted with boronate 26 (0.884 g,
3.00 mmol) using the usual procedure. This gave PS 42
(2.183 g). The weight (0.183 g) corresponds to 2.10 mmol of
residues 42 (87% yield), equal to 0.96 mmol of per g. It had IR
(KBr disc, cm−1) 1632. Elemental analysis for bromine gave
0.19%.
20 J. M. Tour, Chem. Rev., 1996, 96, 537–553.
21 S. Huang and J. M. Tour, J. Org. Chem., 1999, 64, 8898–8906.
22 T. Kirschbaum and P. Bäuerle, Synth. Met., 2001, 119, 127–128.
23 C. A. Briehn, M.-S. Schiedel, E. M. Bonsen, W. Schuhman and
P. Bäuerle, Angew. Chem., Int. Ed., 2001, 40, 4680–4683.
24 C. A. Briehn and P. Bäuerle, Chem. Commun., 2002, 1015–1023.
25 P. R. L. Malenfant and J. M. J. Fréchet, Chem. Commun., 1998, 2657–
2658.
26 P. Coppo and M. L. Turner, J. Mater. Chem., 2005, 15, 1123–1133.
27 F. Jaramillo-Isaza and M. L. Turner, J. Mater. Chem., 2006, 16, 83–89.
28 M. C. McCairn and M. L. Turner, Tetrahedron Lett., 2007, 48, 1045–
1047.
29 M. C. McCairn, F. Huang and M. L. Turner, Tetrahedron Lett., 2008, 49,
1328–1330.
30 J. Jo, C. Chi, S. Hoger, G. Wegner and D. Y. Yoon, Chem.–Eur. J., 2004,
10, 2681–2688.
31 S. S. Zade, N. Zamoshchik and M. Bendikov, Acc. Chem. Res., 2011, 44,
14–24.
32 L. K. Rasmussen, M. Begtrup and T. Ruhland, J. Org. Chem., 2006, 71,
1230–1232.
(iv) Cleavage of PS 42: Following the usual procedure PS 42
(1.000 g, 0.98 mmol), gave recovered beads (0.624 g), a weight
loss of 0.384 g. The soluble product was purified by chromato-
graphy. This gave compound (265 mg, 54%). It had Mp
1
30–32 °C (lit.,44 28–30 °C); H NMR (500 MHz, CDCl3, ppm)
δ 7.09 (2H; d, J = 5.2; H-1), 7.04 (2H; m; H-3 or 4), 6.94 (2H;
m; H-3 or 4), 6.82 (2H; d, J = 5.2; H-2), 2.73 (4H; m; α-CH2),
1.60 (4H; m; β-CH2), 1.25 (12H; m; CH2), 0.81 (6H; m; CH3);
MS (EI): m/z (%): 498 (100), [M+]. Elemental analysis calcu-
lated for C28H34S4: C, 67.45%, H, 6.88%, S, 25.67%, found: C,
67.23%, H, 6.68%, S, 25.65%.
33 T. Klingstedt, A. Åslund, R. A. Simon, L. B. G. Johansson, J. J. Mason,
S. Nyström, P. Hammarström and K. P. R. Nilsson, Org. Biomol. Chem.,
2011, 9, 8356–8370.
34 G. A. Swan, J. Chem. Soc., 1948, 1408–1412.
35 D. G. Davies, M. Derenberg and P. Hodge, J. Chem. Soc. C, 1971, 455–
460.
36 P. G. Gassman, J. T. Lumb and F. V. Zalar, J. Am. Chem. Soc., 1967, 89,
946–952.
Acknowledgements
37 K. E. Hamlin and A. W. Weston, Org. Reactions, 1957, 9, 1–36.
38 P. Hodge, G. M. Perry and P. Yates, J. Chem. Soc., Perkin Trans. 1, 1977,
680–683.
39 M. Derenberg and P. Hodge, Tetrahedron Lett., 1971, 3825–3828.
40 C. R. Harrison, P. Hodge, J. Kemp and G. M. Perry, Makromol. Chem.,
1975, 176, 267–274.
41 M. Humadi, Ph D Thesis, University of Manchester, 2011.
42 P. A. Chaloner, S. R. Gunatunga and P. B. Hitchcock, J. Chem. Soc.,
Perkin Trans. 2, 1997, 1597–1604.
This work was carried out under Grant GR/S02280/01 of the
Carbon Based Electronics Programme. We thank Dr Giudi Barta-
lucci, Dr Arantxa Rodriguez-Menendez, Mohammad Humadi,
Douzhi Zhang and Mahdi Al’Makki for laboratory assistance
during student projects.
43 (a) H. Kong, D. H. Lee, I.-N. Kang, E. Lim, Y. K. Jung, J.-H. Park,
T. Ahn, M. Y. Yi, C. E. Park and H.-K. Shim, J. Mater. Chem., 2008, 18,
1895–1902; (b) J. Cremer, E. Mena- Osteritz, N. G. Pschierer, K. Müllen
and P. Bäuerle, Org. Biomol. Chem., 2005, 3, 985–995.
References
1 (a) Polymer-supported Reactions in Organic Synthesis, ed. P. Hodge and
D. C. Sherrington, Wiley-Interscience, Chichester, 1980; (b) Syntheses
1762 | Org. Biomol. Chem., 2012, 10, 1754–1763
This journal is © The Royal Society of Chemistry 2012