ORGANIC
LETTERS
2012
Vol. 14, No. 7
1866–1868
Introducing Axial Chirality into Mesoionic
4,40-Bis(1,2,3-triazole) Dicarbenes
Jesus M. Aizpurua,*,† Maialen Sagartzazu-Aizpurua,† Zaira Monasterio,† Itxaso Azcune,†
†
†
‡
‡
´
Claudio Mendicute, Jose I. Miranda, Eva Garcıa-Lecina, Ainhoa Altube, and
Raluca M. Fratila§
´
Departamento de Quımica Organica-I, Universidad del Paıs Vasco UPV/EHU, Joxe
Mari Korta R&D Center, Avda Tolosa-72, 20018 San Sebastian, Spain, Departamento
ꢀ
´
ꢀ
ꢀ
de Tratamientos de Superficie, CIDETEC-ik4, Paseo Miramon-196, 20009 San
Sebastian, Spain, and Faculty of Science and Technology, Institute of Biomedical
ꢀ
Technology and Technical Medicine (MIRA), University of Twente, 7500 AE Enschede,
The Netherlands
Received February 24, 2012
ABSTRACT
Mesoionic 4,40-bis(1,2,3-triazole-5,50-diylidene) Rh(I) complexes having a C2 chiral 4,40-axis were accessed from 3-alkyltriazolium salts in virtually
complete de. Their structure and configurational integrity were assessed by NMR spectroscopy, X-ray crystallography, and chiral HPLC.
Computational analysis of the MICs involved in the reaction suggested the formation of a highly stable and unprecedented cation-carbene
intermediate species, which could be evidenced experimentally by cyclic voltammetry analysis.
Mesoionic carbenes (MICs) constitute a novel, yet
scarcely studied, class of divalent carbon species possessing
unique electronic features and transition coordination
ability.1 Very recently, 1H-1,2,3-triazole-derived MICs2 1
(Scheme 1) haveattracted special attention because oftheir
high ligand donation ability and ease of preparation
following “click” chemistry methodologies.3 Introduction
of chirality elements close to the carbene center in such
MIC compounds is a particularly challenging problem,
which was first addressed by Sankararaman et al.4
Inspired by noncarbene atropoisomeric 5,50-bistriazoles
2 described by Burgess,5 we envisioned the dicarbene
† Universidad del Paı
´
s Vasco UPV/EHU.
‡ CIDETEC-ik4.
§ University of Twente.
€
(3) (a) Lalrempuia, R.; McDaniel, N. D.; Muller-Bunz, H.; Bernhard,
S.; Albrecht, M. Angew. Chem., Int. Ed. 2010, 49, 9765–9768. (b) Kilpin,
K. J.; Paul, U. S. D.; Lee, A.-L.; Crowley, J. D. Chem. Commun. 2011, 47,
328–330. (c) Prades, A.; Peris, E.; Albrecht, M. Organometallics 2011, 30,
1162–1167. (d) Poulain, A.; Canseco-Gonzalez, D.; Hynes-Roche, R.;
(1) MICs can only be represented as zwitterions. (a) Araki, S.; Yokoi,
K.; Sato, R.; Hirashita, T.; Setsune, J.-I. J. Heterocyclic Chem. 2009, 46,
164–171. (b) Schuster, O.; Yang, L.; Raubenheimar, H. G.; Albrecht, M.
Chem. Rev. 2009, 109, 3448–3478. (c) Crowley, J. D.; Lee, A.-L.; Kilpin,
K. J. Austral. J. Chem. 2011, 64, 1118–1132. (d) Ung, G.; Bertrand, G.
Chem.;Eur. J. 2011, 17, 8269–8272.
€
Muller-Bunz, H.; Schuster, O.; Stoeckli-Evans, H.; Neels, A.; Albrecht,
M. Organometallics 2011, 30, 1021–1029.
(4) (a) Karthikeyan, T.; Sankararaman, S. Tetrahedron Lett. 2009,
50, 5834–5837. See also: (b) Enders, D.; Gielen, H.; Runsink, J.; Breuer,
K.; Brode, S.; Bohen, K. Eur. J. Inorg. Chem. 1998, 913–919.
(5) Angell, Y.; Burgess, K. Angew. Chem., Int. Ed. 2007, 46, 3649–
3651.
(6) For a study on the rotation around the CꢀPdꢀC axis in
achiral complexes containing two 1,2,3-triazole-5-ylidene ligands, see:
Saravanakumar, R.; Ramkumar, V.; Sankararaman, S. Organometallics
2011, 30, 1689–1694.
(2) (a) Mathew, P.; Neels, A.; Albrecht, M. J. Am. Chem. Soc. 2008,
130, 13534–13535. (b) Guisado-Barrios, G.; Bouffard, J.; Donnadieu,
B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 4759–4762. (c)
Bouffard, J.; Keitz, B. K.; Tonner, R.; Guisado-Barrios, G.; Frenking,
G.; Grubbs, R. H.; Bertrand, G. Organometallics 2011, 30, 2617–2627.
(d) Nakamura, T.; Ogata, K.; Fukuzawa, S.-I. Chem. Lett. 2010, 39,
920–922. (e) Nakamura, T.; Terashima, T.; Ogata, K.; Fukuzawa, S.-I.
Org. Lett. 2011, 13, 620–623. (f) Yuan, D.; Huynh, V. Organometallics
2012, 31, 405–412.
r
10.1021/ol3004657
Published on Web 03/20/2012
2012 American Chemical Society