100
U. Kloeckner et al.
LETTER
(8) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.;
Nachtsheim, B. J. Org. Lett. 2011, 13, 3754.
(9) A seminal work describing tetraalkylammonium iodides in
oxidative cycloetherifications was described by Ishihara and
co-workers: (a) Uyanik, M.; Okamoto, H.; Yasui, T.;
Ishihara, K. Science 2010, 328, 1376. For recently
References and Notes
(1) For reviews, see: (a) Stokes, B. J.; Driver, T. G. Eur. J. Org.
Chem. 2011, 4071. (b) Collet, F.; Dodd, R. H.; Dauban, P.
Chem. Commun. 2009, 5061. (c) Zhang, M. Adv. Synth.
Catal. 2009, 351, 2243. (d) Dick, A. R.; Sanford, M. S.
Tetrahedron 2006, 62, 2439.
published oxidative transformations catalyzed by quaternary
ammonium iodides, see: (b) Uyanik, M.; Suzuki, D.; Yasui,
T.; Ishihara, K. Angew. Chem. Int. Ed. 2011, 50, 5331.
(c) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu,
K.; Wan, X. Chem. Eur. J. 2011, 17, 4085. (d) Rodriguez,
A.; Moran, W. J. Org. Lett. 2011, 13, 2220. (e) Zhu, C.;
Wei, Y. ChemSusChem 2011, 4, 1082.
(2) (a) Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q.
J. Am. Chem. Soc. 2011, 133, 7652. (b) Jordan-Hore, J. A.;
Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J.
J. Am. Chem. Soc. 2008, 130, 16184. (c) Mei, T. S.; Wang,
X. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 10806.
(d) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc.
2010, 132, 12862. (e) Thu, H. Y.; Yu, W. Y.; Che, C. M.
J. Am. Chem. Soc. 2006, 128, 9048. (f) Tsang, W. C. P.;
Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127,
14560. (g) Li, J. J.; Mei, T. S.; Yu, J. Q. Angew. Chem. Int.
Ed. 2008, 47, 6452. (h) Wasa, M.; Yu, J.-Q. J. Am. Chem.
Soc. 2008, 130, 14058. (i) Xiao, B.; Gong, T.-J.; Xu, J.; Liu,
Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466. (j) Sun,
K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc.
2011, 133, 1694.
(10) The reaction between benzo[d]oxazole and N-butylamine
was described in our previous oxidative amination
procedure (see ref. 8). However, this was the only example
of a primary amine in this article.
(11) Typical Experimental Procedure
A reaction vessel was charged with AcOH (0.061 g, 1.010
mmol, 3 equiv) and TBHP (70% solution in H2O, 0.065 g,
0.504 mmol, 1.5 equiv) in MeCN (0.2 mL). After the
addition of TBAI (0.006 g, 0.017 mmol, 5 mol%), 1-phenyl-
ethylamine (2f, 0.029 g, 0.403 mmol, 1.2 equiv), and benz-
oxazole (1a, 0.040 g, 0.336 mmol, 1 equiv) in MeCN (0.2
mL) were added. The reaction mixture was stirred until TLC
showed full conversion of benzoxazole (1.5 h). The reaction
was quenched by addition of an aq solution of Na2S2O5 (2
mL) and a sat. solution of NaHCO3 (5 mL). The mixture was
extracted with CH2Cl2 (5 × 5 mL), combined organic phases
were dried over Na2SO4, and the solvent was removed in
vacuo. The residue was purified by column chromatography
[silica gel; hexane–EtOAc = 10:1 (v/v)] to yield 3f (0.061 g,
81%) as a white amorphous solid. 1H NMR (400 MHz,
CDCl3): d = 7.43–7.41 (m, 2 H), 7.34–7.31 (m, 2 H), 7.28–
7.20 (m, 3 H), 7.12 (t, 1 H, J = 7.7 Hz), 6.99 (t, 1 H, J = 7.7
Hz), 6.88 (br s, 1 H), 5.11 (q, 1 H, J = 6.8 Hz), 1.66 (d, 3 H,
J = 6.7 Hz). 13C{1H} NMR (100 MHz, CDCl3): d = 161.6,
148.4, 143.4, 142.7, 128.7, 127.4, 125.9, 123.8, 120.6,
116.0, 108.8, 52.8, 23.1. IR (neat): 2970, 1658, 1648, 1580,
1458, 1366, 1217, 698 cm–1. HRMS (EI): m/z calcd for
C15H15N2O2 [M + H]+: 239.1179; found: 239.1178. Anal.
Calcd for C15H14N2O2: C, 75.61; H, 5.92; N, 11.76. Found:
C, 75.96; H, 5.56; N, 11.88. Detailed spectroscopic data as
well as 1H and 13C NMR spectra of all compounds 3a–v are
given in the Supporting Information.
(3) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem.
Int. Ed. 2009, 48, 9127.
(4) (a) Li, Y. M.; Xie, Y. S.; Zhang, R.; Jin, K.; Wang, X. N.;
Duan, C. Y. J. Org. Chem. 2011, 76, 5444. (b) Guo, S. M.;
Chan, B.; Xie, Y. J.; Xia, C. G.; Huang, H. M. Org. Lett.
2011, 13, 522. (c) Monguchi, D.; Fujiwara, T.; Furukawa,
H.; Mori, A. Org. Lett. 2009, 11, 1607. (d) Kawano, T.;
Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010,
132, 6900. (e) Zhao, H.; Wang, M.; Su, W.; Hong, M. Adv.
Synth. Catal. 2010, 352, 1301. (f) Guo, S.; Qian, B.; Xie, Y.;
Xia, C.; Huang, H. Org. Lett. 2011, 13, 522. (g) Brasche,
G.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 1932.
(h) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am.
Chem. Soc. 2006, 128, 6790. (i) Wang, Q.; Schreiber, S. L.
Org. Lett. 2009, 11, 5178. (j) Shuai, Q.; Deng, G. J.; Chua,
Z. J.; Bohle, D. S.; Li, C. J. Adv. Synth. Catal. 2010, 352,
632. (k) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk,
R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359.
(5) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem.
Int. Ed. 2010, 49, 9899.
(6) (a) Bonnamour, J.; Bolm, C. Org. Lett. 2011, 13, 2012.
(b) Wang, J.; Hou, J.-T.; Wen, J.; Zhang, J.; Yu, X.-Q.
Chem. Commun. 2011, 47, 3652.
(7) Armstrong, A.; Collins, J. C. Angew. Chem. Int. Ed. 2010,
49, 2282.
Synlett 2012, 23, 97–100
© Thieme Stuttgart · New York