Organometallics
Article
= 2.0 Hz), 26.4 (d, J = 9.1 Hz), 26.2 (d, J = 6.1 Hz), 25.9 (d, J = 1.0
Hz); 31P NMR (162 MHz, CDCl3) δ 118.48; mp 224−225 °C; IR
(neat, cm−1) 3135, 2927, 2852; HRMS (ESI−) calcd for
[C12H23AuClOP − H]− m/z 445.7678, found 445.7670.
Author Contributions
The experiments described were performed by F.S., C.T., E.S.,
H.C., L.G., D.M., Y.G., V.M.-M., and J.-P.G. Buried volumes
were determined by H.C.. The manuscript was written by V.M.-
M. and L.F.
( )-Chloro(cyclohexylphenylphosphinous acid)gold(I) (2e). Ac-
c o r d i n g t o t h e g e n e r a l p r o c e d u r e , u s i n g
(
) -
cyclohexylphenylphosphine oxide (1e;38 0.69 g, 0.33 mmol) and
chloro(dimethyl sulfide)gold(I) (0.98 g, 0.33 mol) at room temper-
Notes
The authors declare no competing financial interest.
1
ature, 2e was isolated as a white solid (0.93 g, 64%): H NMR (400
MHz, CDCl3) δ 7.71−7.66 (m, 2H), 7.51−7.47 (m, 1H), 7.44−7.39
(m, 2H), 2.75 (bs, 1H), 1.97−1.82 (m, 2H), 1.79−1.59 (m, 4H),
1.31−1.08 (m, 5H); 13C NMR (101 MHz, CDCl3) δ 132.6 (d, J = 66.6
Hz), 132.2 (d, J = 3.0 Hz), 131.3 (d, J = 15.1 Hz), 128.8 (d, J = 12.1
Hz), 42.8 (d, J = 48.5 Hz), 26.6 (d, J = 4.0 Hz), 26.5 (d, J = 55.5 Hz),
26.0 (d, J = 2;0 Hz), 25.8 (d, J = 2.0 Hz); 31P NMR (162 MHz,
CDCl3) δ 103.5; HRMS (ESI+) calcd for [C12H21NOPAuCl + NH4]+
m/z 458.0709, found 458.0713.
ACKNOWLEDGMENTS
■
Support by the UPMC, CNRS, IUF, AMU, and Centrale
Marseille is gratefully acknowledged. We thank K. Boubekeur,
L.-M. Chamoreau, and G. Gontard (UPMC) and M. Giorgi
(Spectropole, Federation des Sciences Chimiques de Marseille)
́ ́
for the X-ray structure determinations and D. Lesage (UPMC)
for the MS analyses.
Chloro(di-tert-butylphosphinous acid)gold(I) (2c). To a solution
of di-tert-butylphosphine oxide (1c;38 0.14 g, 0.86 mmol, 1.0 equiv) in
dry dichloromethane (25 mL) was added chloro(dimethyl sulfide)-
gold(I) (0.255 g, 0.86 mmol, 1.0 equiv). The mixture was stirred at
reflux for 2 h in the absence of light under an argon atmosphere. The
crude product was concentrated under vacuum. The resulting solid
was dissolved in dichloromethane (3 mL), and pentane (30 mL) was
added to precipitate the nonreactive ClAuSMe2. After removal of the
solvent, the expected complex 2c was obtained as a white solid which
could be crystallized in a cyclohexane/CH2Cl2 mixture (20/1). 2c was
isolated after filtration (0.106 g, 31%): 1H NMR (400 MHz, CDCl3) δ
1.31 (s, 9H), 1.35 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 37.9 (d, J
= 35.5 Hz), 27.5 (d, J = 7.1 Hz); 31P NMR (162 MHz, CDCl3) δ
133.1; IR (neat, cm−1) 3133, 2954, 2868, 1472, 1393, 1370; low-
resolution MS (ESI 30 V, CH2Cl2) m/z 395.1 (36), 393.1 (100).
( )(tert-Butylphenylphosphinous acid)(2,4,6-trimethoxybenzo-
nitrile)gold(I) Hexafluoroantimonate (2f). To a solution of 2b
(0.415 g, 1.0 mmol, 1.0 equiv) and 2,4,6-trimethoxybenzonitrile (0.197
g, 1.0 mmol, 1.0 equiv) in dry dichloromethane (11 mL) was added
AgSbF6 (0.351 g, 1.0 mmol, 1.0 equiv) under an argon atmosphere. A
white precipitate of AgCl appeared instantly. The mixture was stirred
in the dark for 15 min, and then it was filtered through a Teflon filter
to afford a yellow solution which was concentrated under vacuum. The
crude solid was dissolved in dichloromethane (3 mL), and pentane (3
mL) was added slowly in order to obtain a biphasic solution.
Overnight crystallization gave gray crystals of complex 2f (0.808 g, 1.0
REFERENCES
■
(1) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108,
6405.
(2) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998,
37, 1415.
(3) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000,
122, 11553.
(4) For selected reviews, see: (a) Hashmi, A. S. K. Chem. Rev. 2007,
107, 3180. (b) Arcadi, A. Chem. Rev. 2008, 108, 3266. (c) Jimenez-
Nunez, E.; Echavarren, A. Chem. Rev. 2008, 108, 3326. (d) Li, C.;
Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (e) Corma, A.;
Levya-Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. (f) Krause,
N.; Winter, C. Chem. Rev. 2011, 111, 1994. (g) Fensterbank, L.;
Malacria, M. Acc. Chem. Res. 2014, 47, 953. See also: (h) Modern Gold
Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH:
Weinheim, Germany, 2012. (i) Gold Catalysis: An Homogenous
Approach; Toste, F. D., Michelet, V., Eds.; Imperial College Press:
London, 2014.
(5) Nieto-Oberhuber, C.; Paz Munoz, M.; Bunuel, E.; Nevado, C.;
denas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43,
2402.
(6) Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc.
2004, 126, 8654.
(7) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 10858.
̃
̃
Car
́
̈
1
mmol, quantitative): H NMR (400 MHz, CD2Cl2) δ 7.75−7.69 (m,
2H), 7.60−7.53 (m, 3H), 6.13 (s, 2H), 3.91 (s, 6H), 3.89 (s, 3H), 1.16
(d, J = 16.0 Hz, 9H); 13C NMR (101 MHz, CD2Cl2) δ 169.7, 166.6,
133.6 (d, J = 3.0 Hz), 132.3 (d, J = 15.2 Hz), 129.9 (d, J = 66.7 Hz),
129.4 (d, J = 12.1 Hz), 119.8, 91.7, 57.2, 56.9, 35.7 (d, J = 48.5 Hz),
24.5 (d, J = 7.1 Hz); 31P NMR (162 MHz, CDCl3) δ 113.6; mp 170−
171 °C; IR (neat, cm−1) 3608, 2956, 2249, 1603, 1576, 1477, 1460,
1437, 1421.02; HRMS (ESI+) calcd for [C20H26AuNO4P]+ m/z
572.1259, found 572.1272.
(8) (a) Wang, W.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2012,
134, 5697. (b) For reviews, see: Gorin, D. J.; Sherry, B. J.; Toste, F. D.
Chem. Rev. 2008, 108, 3351. (c) Wang, Y.-M.; Lackner, A. D.; Toste, F.
D. Acc. Chem. Res. 2014, 47, 899.
(9) For a recent review on the benefits brought by NHCs in
homogenous gold catalysis, see: Gatineau, D.; Goddard, J.-P.; Mouries
̀
-
Mansuy, V.; Fensterbank, L. Isr. J. Chem. 2013, 53, 892.
(10) For representative and very recent examples of new ligands in
gold catalysis, see: (a) Fourmy, K.; Mallet-Ladeira, S.; Dechy-Cabaret,
O.; Gouygou, M. Organometallics 2013, 32, 1571. (b) Yavari, K.;
Aillard, P.; Zhang, Y.; Nuter, F.; Retailleau, P.; Voituriez, A.; Marinetti,
A. Angew. Chem., Int. Ed. 2014, 53, 861. (c) Blanco Jaimes, M. C.;
ASSOCIATED CONTENT
* Supporting Information
Text, figures, and CIF files giving experimental procedures and
characterization data for all new compounds and crystallo-
graphic data for all X-ray structures. This material is available
■
S
Bohling, C. R. N.; Serrano-Becerra, J. M.; Hashmi, A. S. K. Angew.
̈
Chem., Int. Ed. 2013, 52, 7963. (d) Guittet, M.; et al. Angew. Chem., Int.
Ed. 2013, 52, 7213. (e) Henrion, G.; Chavas, T. E. J.; Le Goff, X.;
Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277. (f) Dubarle-Offner,
J.; et al. Organometallics 2013, 32, 1665. (f) Malhotra, D.; Mashuta, M.
S.; Hammond, G. B.; Xu, B. Angew. Chem. Int. Ed. 2014, 53, 4456.
(11) (a) Griffiths, J. E.; Burg, A. B. J. Am. Chem. Soc. 1960, 82, 1507.
(b) Chatt, J.; Heaton, B. T. J. Chem. Soc. A 1968, 2745. (c) Hoge, B.;
Neufeind, S.; Hettel, S.; Wiebe, W.; Thoesen, C. J. J. Organomet. Chem.
2005, 690, 2382. (d) Christiansen, A.; Li, C.; Garland, M.; Selent, D.;
AUTHOR INFORMATION
Corresponding Author
■
Present Address
⊥Laboratoire de Chimie Organique et Bioorganique EA4566,
́ ́
Universite de Haute-Alsace, Ecole Nationale Superieure de
Chimie de Mulhouse, 3 rue Alfred Werner, F-68093 Mulhouse
Cedex, France.
Ludwig, R.; Spannenberg, A.; Baumann, W.; Franke, R.; Borner, A.
̈
Eur. J. Org. Chem. 2010, 2733.
4055
dx.doi.org/10.1021/om500568q | Organometallics 2014, 33, 4051−4056