Inorganic Chemistry
ARTICLE
A sample of the yellow suspension was cannula transferred at low
’ DEDICATION
temperature into a PFA inliner and studied at ꢀ70 and ꢀ60 °C by NMR
Dedicated to Prof. Dr. Felix Aubke on the occasion of his 80th
birthday.
spectroscopy. Only very broad signals were observed in the 11B and 19
F
NMR spectra. However, the formation of trifluoromethylborates was
evident from these spectra. Upon warming of the suspension inside the
PFA inliner the yellow solid liquefied at approximately ꢀ40 °C and
separated as a yellow phase at the bottom of the inliner (NCl3).
All volatiles of the reaction mixture in the PFA flask were removed in a
vacuum while warming up to room temperature. The solid yellow residue
was studied by NMR spectroscopy in CD3CN and by Raman spectroscopy
at room temperature. The Raman spectrum was dominated by strong
bands at 540, 351, and 260 cmꢀ1 that were assigned to NCl3,33 adsorbed
on the borate salts. A mixture of borate anions with CN, CF3, CF2ꢀNCl2,
and CFdNCl groups was observed by 11B and 19F NMR spectroscopy.
The main components of the mixture are the anions [(CF3)3BCN]ꢀ,
[(CF3)2B(CN)2]ꢀ, and [B(CF2NCl2)2(CN)2]ꢀ.
’ REFERENCES
(1) Beck, W.; S€unkel, K. Chem. Rev. 1988, 88, 1405–1421. Strauss,
S. H. Chem. Rev. 1993, 93, 927–942. Krossing, I.; Raabe, I. Angew. Chem.
2004, 116, 2116–2142. Angew. Chem., Int. Ed. 2004, 43, 2066–2090.
Reed, C. A. Acc. Chem. Res. 2010, 43, 121–128.
(2) Bernhardt, E.; Henkel, G.; Willner, H.; Pawelke, G.; B€urger, H.
Chem.—Eur. J. 2001, 7, 4696–4705.
(3) Finze, M.; Bernhardt, E.; Willner, H. Angew. Chem. 2007,
119, 9340–9357. Angew. Chem., Int. Ed. 2007, 46, 9180–9196.
(4) Bernhardt, E.; Berkei, M.; Willner, H. Z. Anorg. Allg. Chem. 2009,
635, 2009–2015.
NMR Spectroscopic Study of the Reaction of K[B(CN)4]
with ClF in CH2Cl2. A 100 mL PFA reactor equipped with a magnetic
stirring bar was charged with [nBu4N][B(CN)4] (300 mg, 0.8 mmol),
spray-dried KF (1.75 g, 30 mmol), and dichloromethane (20 mL). At
ꢀ78 °C ClF was added (12 g, 220 mmol) over 4 h. Then all volatiles
were removed under reduced pressure at low temperature. The remain-
ing white solid residue was studied by 11B and 19F NMR spectroscopy at
room temperature, and the data of the anions that could be assigned are
collected in Table 1. [nBu4N][B(CF2NCl2)3CN] is the main product of
the fluorination experiment (70%) followed by [nBu4N][B(CF3)4]
(15%), [nBu4N][B(CF2NCl2)2(CF2X)2] (X probably NClF) (5%),
and [nBu4N][B(CF3)3(CF2NCl2)] (4%).
(5) Schmidt, M.; K€uhner, A.; Willner, H.; Bernhardt, E. Merck
Patent GmbH EP1205480(A2), 2002.
(6) Finze, M. Ph.D. Thesis, University of Hannover, Hannover,
Germany, 2004.
(7) Bernhardt, E.; Finze, M.; Willner, H. Z. Anorg. Allg. Chem. 2006,
632, 248–250.
(8) Wilson, W. W.; Vij, A.; Vij, V.; Bernhardt, E.; Christe, K. O.
Chem.—Eur. J. 2003, 9, 2840–2844.
(9) Finze, M.; Bernhardt, E.; Berkei, M.; Willner, H.; Hung, J.;
Waymouth, R. M. Organometallics 2005, 24, 5103–5109.
(10) Bernhardt, E.; Finze, M.; Willner, H.; Lehmann, C. W.; Aubke,
F. Chem.—Eur. J. 2006, 12, 8276–8283.
(11) Koppe, K.; Bilir, V.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen,
G. J. Inorg. Chem. 2007, 46, 9425–9437. Koppe, K.; Frohn, H.-J.;
Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2008, 47, 3205–3217.
(12) Finze, M.; Bernhardt, E.; Z€ahres, M.; Willner, H. Inorg. Chem.
2004, 43, 490–505.
(13) Terheiden, A.; Bernhardt, E.; Willner, H.; Aubke, F. Angew.
Chem. 2002, 114, 823–825. Angew. Chem., Int. Ed. 2002, 41, 799–801.
(14) Finze, M.; Bernhardt, E.; Terheiden, A.; Berkei, M.; Willner, H.;
Christen, D.; Oberhammer, H.; Aubke, F. J. Am. Chem. Soc. 2002, 124,
15385–15398.
DFT Calculations. DFT calculations34 were carried out using the
B3LYP method35 with the basis sets 6-311++G(d,p) as implemented in
the Gaussian 03 program suite.36 Diffuse functions were incorporated
because improved energies are obtained for anions.37 Frequency calcu-
lations were performed for all species, and all structures represent true
minima without imaginary frequencies on the respective hypersurface.
Transition states exhibit one imaginary frequency and IRC calculations
were performed to verify that the transition states connect the products
and reactants, respectively.38 All energies presented herein are zero point
corrected. For enthalpies and free energies the thermal contributions are
included for 298 K. DFT-GIAO39 NMR shielding constants σ(11B) and
σ(19F) were calculated at the B3LYP/6-311++G(d,p) level of theory.
(15) Finze, M.; Bernhardt, E.; Willner, H.; Lehmann, C. W. Angew.
Chem. 2004, 116, 4253. Angew. Chem., Int. Ed. 2004, 43, 4160.
(16) Finze, M.; Bernhardt, E.; Willner, H.; Lehmann, C. W. J. Am.
Chem. Soc. 2005, 127, 10712–10722.
(17) Finze, M.; Bernhardt, E.; Willner, H.; Lehmann, C. W. Angew.
Chem. 2003, 115, 1082. Angew. Chem., Int. Ed. 2003, 42, 1052. Finze, M.;
Bernhardt, E.; Willner, H.; Lehmann, C. W. Chem.—Eur. J. 2005, 11,
6653–6665.
(18) Finze, M.; Bernhardt, E.; Willner, H.; Ignatiev, N. V.; Welz-
Biermann, U. Merck Patent GmbH WO2006045405A1, 2006.
(19) Bernhardt, E.; Willner, H., unpublished results.
(20) K€utt, A.; Rodima, T.; Saame, J.; Raamat, E.; M€aemets, V.;
Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R. Y.; Yagupolskii, Y. L.;
Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76,
391–395.
’ ASSOCIATED CONTENT
S
Supporting Information. A table containing calculated
b
19F and 11B NMR chemical shifts of borate anions containing
BꢀCN, BꢀCFNCl, BꢀCF2NCl2, BꢀCF3, BꢀCF2Cl, and
BꢀCF2NClF groups as well as 19F and 11B NMR spectra of
selected borate anions. This material is available free of charge via
’ AUTHOR INFORMATION
(21) Finze, M.; Bernhardt, E.; Willner, H.; Lehmann, C. W. Orga-
nometallics 2006, 25, 3070–3075.
(22) Bernhardt, E.; Finze, M.; Willner, H. Z. Anorg. Allg. Chem. 2003,
Corresponding Author
*E-mail: edbern@uni-wuppertal.de (E.B.), willner@uni-wuppertal.
de (H.W.).
629, 1229–1234.
(23) Boguslavskaya, L. S. Usp. Khim. 1984, 53, 2024–2055. Russ.
Chem. Rev. 1984, 53, 1178–1194. Hynes, J. B.; Austin, T. E. Inorg. Chem.
1966, 5, 488–489. Young, D. E.; Anderson, L. R.; Fox, W. B. Chem.
Commun. 1970, 395.Young, D. E.; Anderson, L. R.; Fox, W. B.; 1972;
Sekiya, A.; DesMarteau, D. D. J. Am. Chem. Soc. 1979, 101, 7640–7641.
Thrasher, J. S.; Bauknight, C. W.; DesMarteau, D. D. Inorg. Chem. 1985,
24, 1598–1599. Marsden, H. M.; Shreeve, J. M. Inorg. Chem. 1987,
26, 169–172. Bauknight, C. W.; DesMarteau, D. D. J. Am. Chem. Soc.
1990, 112, 728–733. Zheng, Y. Y.; Patel, N. R.; Kirchmeier, R. L.;
Shreeve, J. M. Inorg. Chem. 1992, 31, 488–491.
’ ACKNOWLEDGMENT
This work was financial supported by the Deutsche For-
schungsgemeinschaft and the Fonds der Chemischen Industrie.
We appreciate Dr. J. Eicher (Solvay Fluor GmbH) for donating
aHF to us and Dr. N. Ignatiev (Merck KGaA) for donating
K[B(CN)4] to us.
10272
dx.doi.org/10.1021/ic201319h |Inorg. Chem. 2011, 50, 10268–10273