174
D. Kuck et al. / International Journal of Mass Spectrometry 306 (2011) 167–174
plexes is reflected by the relative rates of the alkene and alkane
losses. Thus, the 1,2-shift of a tert-butyl group from the para- to a
meta-position of the protonated benzene ring gives rise to a char-
acteristic increase of the alkene loss due to the increase of the
gas-phase basicity of the neutral component of the I/N complex,
together with a decreased alkane loss. Isobutyl-substituted iso-
mers behave different from the tert-butyl-substituted [M+H]+ ions;
[10] T.H. Morton, in: P.B. Armentrout (Ed.), Encyclopedia of Mass Spectrometry, vol.
1, Elsevier, Amsterdam, 2003, pp. 467–479 (Chapter 6).
[11] T.H. Morton, in: N.M.M. Nibbering (Ed.), Encyclopedia of Mass Spectrometry,
vol. 4, Elsevier, Amsterdam, 2005, pp. 165–173 (Chapter 2).
[12] J. Bialecki, J. Ruzicka, A.B. Attygalle, J. Mass Spectrom. 41 (2006) 1195.
[13] Y. Chai, K. Jiang, Y. Pan, J. Mass Spectrom. 45 (2010) 496.
[14] D. Kuck, C. Matthias, J. Am. Chem. Soc. 114 (1992) 1901.
[15] C. Matthias, D. Kuck, Org. Mass Spectrom. 28 (1993) 1073.
[16] C. Matthias, K. Weniger, D. Kuck, Eur. Mass Spectrom. 1 (1995) 445.
[17] C. Matthias, S. Anlauf, K. Weniger, D. Kuck, Int. J. Mass Spectrom. 199 (2000)
155.
[18] C. Matthias, D. Kuck, Int. J. Mass Spectrom. 217 (2002) 131.
[19] C. Matthias, A. Cartoni, D. Kuck, Int. J. Mass Spectrom. 255–256 (2006) 195.
[20] C. Matthias, B. Bredenkötter, D. Kuck, Int. J. Mass Spectrom. 228 (2003) 321.
[21] C. Matthias, D. Kuck, Croat. Chem. Acta 82 (2009) 7.
[22] D. Kuck, U. Filges, Org. Mass Spectrom. 23 (1988) 643.
[23] H.E. Audier, F. Dahhani, A. Milliet, D. Kuck, J. Chem. Soc., Chem. Commun. (1997)
429.
[24] H.E. Audier, C. Monteiro, P. Mourgues, D. Berthomieu, Org. Mass Spectrom. 25
(1990) 245.
[25] J.P. Denhez, H.E. Audier, D. Berthomieu, Rapid Commun. Mass Spectrom. 9
(1995) 1210.
+
they do not form I/N complexes containing tert-C4H9 ions which
would reflect the basicity of the neutral constituent. Rather, iso-
+
merization to the more acidic sec-C4H9 ions should occur. The
competing losses of cycloalkene(s) and cycloalkane(s) from the
metastable [M+H]+ ions of cyclohexyl- and (methylcyclopentyl)-
substituted 1,3-diphenylpropanes reflects the at least partial
isomerization of the ionic constituents of the correspond-
ing I/N complexes, [(CH2)5 > CH+· · ·C6H5CH2CH2CH2C6H5] and
[(CH2)4 > C+CH3· · ·C6H5CH2CH2CH2C6H5]. Thus, in suitably tailored
cases, the fragmentation of organic ions via reactive ion/neutral
complexes can reflect the structure–reactivity relation of the ionic
and/or the neutral constituents of these intermediates.
[26] J.P. Denhez, H.E. Audier, D. Berthomieu, Org. Mass Spectrom. 28 (1993) 704.
[27] D. Berthomieu, V. Brenner, G. Ohanessian, J.P. Denhez, P. Millie, H.E. Audier, J.
Am. Chem. Soc. 115 (1993) 2505.
[28] D.J. McAdoo, C.E. Hudson, Int. J. Mass Spectrom. Ion Processes 88 (1989) 133.
[29] E.L. Chronister, T.H. Morton, J. Am. Chem. Soc. 112 (1990) 133.
[30] T.A. Molenaar-Langeveld, C. Gremmen, S. Ingemann, N.M.M. Nibbering, Int. J.
Mass Spectrom. 199 (2000) 1.
[31] C. Denekamp, A. Stanger, J. Chem. Soc., Chem. Commun. (2002) 236.
[32] J.L. Devlin III, J.F. Wolf, R.W. Taft, W.J. Hehre, J. Am. Chem. Soc. 98 (1976) 1990.
[33] D.A. Aue, M.T. Bowers, in: M.T. Bowers (Ed.), Gas Phase Ion Chemistry, vol. 2,
Academic Press, New York, San Francisco, 1979, pp. 1–51.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[34] E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27 (1998) 413.
[35] NIST Standard Reference Database Number 69, March 2005 Release,
National Institute of Standards and Technology, Gaithersburg, MD 20899
[1] P. Longevialle, Mass Spectrom. Rev. 11 (1992) 157.
[2] T.H. Morton, Tetrahedron 38 (1982) 3195.
[36] M. Eckert-Maksic´, M. Klessinger, Z.B. Maksic´, Chem. Eur. J. 2 (1996) 1251.
[37] Z.B. Maksic´, B. Kovacˇevic´, D. Kovacˇek, J. Phys. Chem. A 101 (1997) 7446.
[38] C. Wesdemiotis, R. Wolfschütz, H. Schwarz, Tetrahedron 36 (1980) 275.
[39] M. Attina, F. Cacace, P. Giacomello, J. Am. Chem. Soc. 103 (1981) 4711.
[40] M. Attina, F. Cacace, R. Cipollini, M. Speranza, J. Am. Chem. Soc. 107 (1985) 4824.
[41] M. Speranza, Int. J. Mass Spectrom. Ion Processes 118–119 (1992) 395.
[42] I.D. Mackie, J. Govindhakannan, G.A. DiLabio, J. Phys. Chem. A 112 (2008) 4004.
[43] I.D. Mackie, J. Govindhakannan, J. Mol. Struct., THEOCHEM 939 (2010) 53.
[44] K. Shimizu, T. Sunagawa, K. Arimura, H. Hattori, Catal. Lett. 63 (1999) 185.
[3] T.H. Morton, Org. Mass Spectrom. 27 (1992) 353.
[4] R.D. Bowen, Acc. Chem. Res. 24 (1991) 364.
[5] D.J. McAdoo, Mass Spectrom. Rev. 7 (1988) 363.
[6] D.J. McAdoo, T.H. Morton, Acc. Chem. Res. 26 (1993) 295.
[7] G. Thielking, U. Filges, H.F. Grützmacher, J. Am. Soc. Mass Spectrom. 3 (1992)
417.
[8] D. Berthomieu, V. Brenner, G. Ohanessian, J.P. Denhez, P. Millié, H.E. Audier, J.
Phys. Chem. 99 (1995) 712.
[9] A.G. Harrison, J.Y. Wang, Int. J. Mass Spectrom. Ion Processes 160 (1997) 157.