D. Mondal, L. Bellucci, S. D. Lepore
SHORT COMMUNICATION
support. We also thank Dr. Songye Li, Prof. Andrea Tafi, and Prof.
Salvatore Guccione for helpful discussions.
[1] For a recent review, see: E. Valeur, M. Bradley, Chem. Soc. Rev.
2009, 38, 606.
[2] For a few authoritative reviews, see: a) B. T. Cho, Chem. Soc.
Rev. 2009, 38, 443; b) T. Ikariya, A. J. Blacker, Acc. Chem. Res.
2007, 40, 1300; c) M. S. Lall (Ed.: J. J. Li, E. J. Corey), Name
Reactions of Functional Group Transformations, Wiley, New
York, 2007, p. 46; d) E. J. Corey, C. J. Helal, Angew. Chem.
1998, 110, 2092; Angew. Chem. Int. Ed. 1998, 37, 1986.
[3] a) A. Baroudi, J. Alicea, P. Flack, J. Kirincich, I. V. Alabugin,
J. Org. Chem. 2011, 76, 1521–1537; b) A. Baroudi, P. Flack,
I. V. Alabugin, Chem. Eur. J. 2010, 16, 12316–12320.
[4] C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007, 317,
790–792.
[5] a) A. Toshimitsu, C. Hirosawa, K. Tamao, Tetrahedron 1994,
50, 8997; b) T. J. Blacklock, P. Sohar, J. W. Butcher, T. Lam-
anec, E. J. Grabowski, J. Org. Chem. 1993, 58, 1672.
[6] a) P. Rubenbauer, T. Bach, Chem. Commun. 2009, 16, 2130; b)
K. Van Emelen, T. De Wit, G. J. Hoornaert, F. Compernolle,
Org. Lett. 2000, 2, 3083; S. Davies, R. F. Newton, J. M. J. Wil-
liams, Tetrahedron Lett. 1989, 30, 2967–2970.
Scheme 4. Proposed mechanism and intermediates for the observed
amidation reaction.
Conclusions
We have discovered an exciting variation of the Ritter
reaction by using an inexpensive and unexplored TiIV/nitrile
reagent to prepare amides directly from cyclic secondary
alcohols. Critical to the design of this new reaction is the
first-ever use of chlorosulfites, formed by the well-known
reaction of alcohols and thionyl chloride, as in situ formed
chelating leaving groups. Further mechanistic studies on
this system are currently underway especially with a view
to achieve substoichiometric use of the reagents involved.
[7] a) P. Sohar, D. J. Mathre, T. J. Blacklock Eur. Pat. Appl.
EPXXDW EP 617037 A1 19940928, 1994; b) L. A. Popova,
N. G. Kozlov, S. A. Makhnach, Vestsi Akademii Navuk BSSR,
Seryya Khimichnykh Navuk 1990, 3, 49–54.
[8] These often proceed through an azide intermediate; for recent
examples, see: a) Y. Demizu, K. Matsumoto, O. Onomura, Y.
Matsumura, Tetrahedron Lett. 2007, 48, 7605; b) M. Tiecco, L.
Testaferri, C. Santi, C. Tomassini, S. Santoro, F. Marini, L.
Bagnoli, A. Temperini, Tetrahedron 2007, 63, 12373.
[9] S. D. Lepore, D. Mondal, S. Y. Li, A. K. Bhunia, Angew. Chem.
2008, 120, 7621; Angew. Chem. Int. Ed. 2008, 47, 7511–7514.
[10] S. D. Lepore, D. Mondal, Tetrahedron 2007, 63, 5103–5122.
[11] Elegant computational studies continue to verify the theoreti-
cal validity of the hyperconjomer theory; for recent examples,
see: a) C. Fraschetti, F. R. Novara, A. Filippi, M. Speranza,
N. A. Trout, W. Adcock, E. Marcantoni, G. Renzi, G. Roselli,
M. Marcolini, J. Org. Chem. 2009, 74, 5135; b) A. V. Igor, M.
Mariappan, J. Org. Chem. 2004, 69, 9011–9024.
[12] a) A. Rauk, T. S. Sorensen, C. Maerker, J. W. Carneiro, M. De,
S. Sieber, P. v. R. Schleyer, J. Am. Chem. Soc. 1996, 118, 3761;
b) R. P. Kirchen, K. Ranganayakulu, T. S. Sorensen, J. Am.
Chem. Soc. 1987, 109, 7811.
[13] A. Rauk, T. S. Sorensen, P. v. R. Schleyer, J. Chem. Soc. Perkin
Trans. 2 2001, 869.
[14] S. D. Lepore, A. K. Bhunia, D. Mondal, P. C. Cohn, C. J. Lef-
kowitz, J. Org. Chem. 2006, 71, 3285–3286.
[15] For a recent study, see: A. C. Magalhaes, F. M. Levy, M. J. Bu-
zalaf, Dentistry 2010, 38, 153.
[16] For a few leading examples, see: a) S. Bondalapati, U. C.
Reddy, D. S. Kundu, A. K. Saikia, J. Fluorine Chem. 2010, 131,
320; b) S. Mizuta, N. Shibata, S. Ogawa, H. Fujimoto, S. Naka-
mura, T. Toru, Chem. Commun. 2006, 2575; c) R. O. Duthaler,
A. Hafner, Angew. Chem. 1997, 109, 43; Angew. Chem. Int. Ed.
Engl. 1997, 36, 43.
[17] H. J. Emeleus, G. S. Rao, J. Chem. Soc. 1958, 4245.
[18] G. B. Nikiforov, C. Knapp, J. Passmore, A. Decken, J. Fluorine
Chem. 2006, 127, 1398.
Experimental Section
General Procedure for Stereoretentive Amidation Reactions: To an
ice-cold solution of alcohol (1.0 equiv.) in dichloromethane (1.0 m)
was added thionyl chloride (1.5 equiv.) followed by stirring for 1 h
to form the chlorosulfite. In a separate reaction vessel, nitrile
(40 equiv.) was added to a TiF4 (10 equiv.) suspension in dichloro-
methane (4.0 m) and allowed to stir at room temperature until com-
plete dissolution (≈15 min). Because TiF4 is fairly moisture sensi-
tive, it was quickly transferred to a reaction vessel under an atmo-
sphere of argon and then weighed. The amount of each remaining
reagent was then based on the weight of TiF4. The titanium/nitrile
solution was then cooled to 0 °C, and to this solution was added
the previously prepared chlorosulfite, transferring by cannula under
argon pressure. The chlorosulfite-containing vessel was further
washed with an amount of dichloromethane necessary to bring the
final concentration of TiF4 in the other vessel to the desired con-
centration (2.5 m). After stirring for 2 h, the reaction was quenched
with deionized water and stirred (≈30 min) until the organic layer
became clear. The organic layer was removed, and the aqueous
layer was extracted with dichloromethane (2ϫ). All organic layers
were combined, dried with anhydrous sodium sulfate, and concen-
trated in vacuo. The crude product was purified by silica gel flash
chromatography (ethyl acetate/hexane).
Supporting Information (see footnote on the first page of this arti-
cle): Characterization data for compounds 1a–e, 1g, 3–7, and 5α-
[19] D. Mondal, S. Y. Li, L. Bellucci, A. Tafi, S. Guccione, S. D.
Lepore, manuscript in preparation.
[20] Although a large excess of TiF4 is used in this reaction, we
note that the reagent is very inexpensive (≈1 USD/g) and envi-
ronmentally benign.
1
cholestan-3β-chloride; copies of the H and 13C NMR spectra for
compounds 1, 3–7, and 8, 10, and 11; NMR spectra of product
mixtures for variously substituted cyclohexanols.
[21] For perspective, this yield represents a sixfold increase over the
highest yield achieved in the literature by using a Lewis acid
assisted Ritter reaction with menthol, which is considered a
problematic substrate: P. B. Shrestha-Dawadi, J. Jochims, Syn-
thesis 1993, 426–432.
Acknowledgments
We thank the National Institutes of Mental Health (087932–01)
and National Science Foundation (NSF) (0311369) for financial
7060
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 7057–7061