S.E. d’Arbeloff et al. / Journal of Organometallic Chemistry 564 (1998) 189–191
191
[9] K.B. Dillon, F. Mathey, J.F. Nixon, Phosphorus: The Carbon
Copy, Wiley, Chichester, UK, 1998.
[10] J. F. Nixon, Coord. Chem. Revs. 145 (1995) 201; Chem. Soc.
Revs. 24 (1995) 319, and references therein.
[11] M. Regitz, P. Binger, in M. Regitz, O.J. Scherer (Eds.), Multiple
Bonds and Low Coordination in Phosphorus Chemistry, Georg
Thieme, Stuttgart, and references therein, 1991, chapter 2.
[12] J.F. Nixon, Chem. Rev. 88 (1988) 1327, and references therein.
[13] 7: 1H-NMR (360 MHz, CD3CN); l 1.82 (s, C5Me5, 30H), 0.61
(s, But, 18H).
[14] Crystal data for 7: C31H50Cl2P2S6W2, M=1115.6, monoclinic,
space group C2/c (No. 15), a=28.794(6), b=9.435(6), c=
3
˚
˚
15.074(4) A, i=107.17(2)°, U=3913(3) A , Z=4, Dcalc=1.89
g cm−3, F(000)=2716. Monochromated Mo–Kh radiation u=
0.71073 A, T=173(2) K. Data were collected on an Enraf-
˚
Nonius CAD 4 diffractometer using a crystal of 0.20×0.20×
0.05 mm. A total of 3423 independent reflections were measured
for 2BqB25o of which 2165 had I\2|I. The structure was
solved by direct methods using SHELXS-86 and refined on F2
with all non-H atoms anisotropic using SHELXL-93. Methyl-H
atoms were included in riding mode, fixed at idealised geometry,
but with the torsional angle defining the H atom positions
refined and Uiso(H)=1.5Ueq(C). The final residues were R1=
0.075 (for I\2|I) and wR2=0.203 for all data.
Fig. 2. Molecular structure of 8 together with selected bond length
o
˚
(A) and bond angle ( ) data: W···W 3.0652(3), WꢁS(1) 2.402(1),
WꢁS(2) 2.401(1), WꢁS(3) 2.348(1), WꢁS(3)* 2.344(1), S(1)ꢁC(11)
1.736(4), S(2)ꢁC(18) 1.740(4), C(11)ꢁC(18) 1.358(5); WꢁS(3)ꢁW*
[15] 8: 1H-NMR (500 MHz, CDCl3); l 2.02 (s, C5Me5, 30H), 7.2 (m,
Ph, 20H). UV-visible (umax, nm THF): 409, 542, 638. Found C,
49.01, H, 4.41, S, 15.89; C48H50W2S6 requires C, 48.57, H, 4.25,
S, 16.21%.
81.58(3),
S(2)ꢁWꢁS(1)
78.07(3),
WꢁS(2)ꢁC(18)
111.3(1),
WꢁS(1)ꢁC(11) 111.1(1), S(2)ꢁC(18)ꢁC(11) 118.3(3), S(1)ꢁC(11)ꢁC(18)
118.9(3).
[16] Crystal data for 8: C48H50S6W2, M=1186.98, triclinic, space
˚
References
(
group P1 (No. 2), a=10.5450(9), b=11.1888(8), c=9.898(1) A,
h=96.359(8), i=91.321(8), k=77.343(6) , U=1132.4(2) A ,
o
3
˚
Z=1, Dcalc=1.740 g cm−3, F(000)=582.00. Monochromated
Mo–Kh radiation u=0.71069 A, T=296 K. Data were col-
[1] E.I. Stiefel, K. Matsumoto (Eds.), Transition Metal Sulfur
Chemistry, Biological and Industrial Significance, American
Chemical Society, Washington, DC, 1996.
[2] E.I. Stiefel, D. Coucouvanis, W.E. Newton (Eds.), Molybdenum
Enzymes, Cofactors and Model Systems, American Chemical
Society, Washington, DC, 1993.
[3] M. Rakowski, B.R. DuBois, B.R. Jagirdar, S. Dietz, B.C. Noll,
Organometallics 16 (1997) 294, and references therein.
[4] A.A. Eagle, S.M. Harben, E.R.T. Tiekink, C.G. Young, J. Am.
Chem. Soc. 116 (1994) 9749.
[5] T. Shibahara, G. Sakane, S. Mochida, J. Am. Chem. Soc. 115
(1993) 10408.
[6] J.T. Goodman, T.B. Rauchfuss, Angew. Chem. Int. Ed. Engl. 36
(1997) 2083.
[7] H. Kawaguchi, K. Tatsumi, J. Am. Chem. Soc. 117 (1995) 3885.
[8] H. Kawaguchi, K. Yamada, J.-P. Lang, K. Tatsumi, J. Am.
Chem. Soc. 119 (1997) 10346.
˚
lected on a Rigaku AFC7R diffractometer using a crystal of
0.20×0.25×0.15 mm. A total of 5203 independent reflections
were measured for 2BqB25o of which 4430 had I\3|I. The
structure was solved by Patterson methods and refined by full-
matrix least-squares with all non-H atoms anisotropic using the
TEXSAN package. The final residues were R=0.023 and Rw=
0.027 (for I\3|I).
[17] A.R. Barron, A.H. Cowley, S.W. Hall, C.M Nunn, Angew.
Chem. Int. Ed. Engl. 27 (1988) 837.
[18] (a) E. Lindner, C. Haase, H.A. Meyer, M. Kemmler, R. Fawzi,
M. Steimann, Angew. Chem. Int. Ed. Engl. 32 (1993) 1424. (b)
E. Lindner, T. Schlenker, C. Haase, J. Organomet. Chem. 464
(1994) C31.
[19] S.E. d’Arbeloff, S. Krill, J.F. Nixon, L. Nyulaszi, M. Regitz,
paper in preparation.
.