Laureates: awards and Honors, sCs FaLL Meeting 2011
CHIMIA 2012, 66, No. 4 199
Table 5. Scope of substrate
[1] For reviews on asymmetric conjugate additions,
Röder, Synthesis 2001, 171; d) A. Alexakis,
C. Benhaim, Eur. J. Org. Chem. 2002, 3221;
in Asymmetric Catalysis’, American Chemical
2.0 eq. Me Al
3
5mol% CuT
C
O
Me O
5mol% (R)-BIN
AP
OEt
OEt
R
R ∗
THF,-78°C, 17h
O
O
>99% regio.
31-45
46-60
Society, Washington DC, 2004, 43; g) J.
Christoffers, G. Koripelly, A. Rosiak, M.
Rössle, Synthesis 2007, 1279; h) A. Alexakis,
J. E. Backvall, N. Krause, O. Pamies, M.
Harutyunyan, T. den Hartog, K. Geurts, A. J.
Entry
Sub.
R
Prod.
Yield
[%]
ee [%]a
1
2
31
32
p-FC6H4
p-ClC6H4
46
47
68
87
97
97
[2] a) L. Palais, L. Babel, A. Quintard, S. Belot,
3
4
5
6
7
33
34
35
36
37
38
39
40
41
42
43
44
45
p-BrC6H4
m-BrC6H4
o-BrC6H4
48
49
50
51
52
53
54
55
56
57
58
59
60
91
85
89
55
35
27
88
91
90
93
93
90
92
98
>99.5
99
97
94
27
96
88
92
98
91
82
98
A. Alexakis, Org. Lett. 2010, 12, 1988; b) L.
Gremaud, A. Alexakis, Angew. Chem. Int. Ed.,
p-MeOC6H4
m-MeOC6H4
o-MeOC6H4
p-NO2C6H4
m-NO2C6H4
o-NO2C6H4
m-iPrC6H4
C7H15
[3] a) S. Brase, S. Hofener, Angew. Chem. Int. Ed.
8
9
2005, 44, 7879; b) S. Ay, M. Nieger, S. Brase,
Chem. Eur. J. 2008, 14, 11539; c) J. M. O’Brien,
A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133,
7712.
10
11
12
13
14
15
[5] a) R. Des Mazery, M. Pullez, F. Lopez, S. R.
Harutyunyan, A. J. Minnaard, B. L. Feringa,
Fananas-Mastral, B. L. Feringa, J. Am. Chem.
Soc. 2010, 132, 13152.
cyclohexyl
C6H4CH=CH
aDetermined by either GC, SFC or HPLC using chiral stationary phase. bNo
1,6-addition product was observed.
[6] J. M. Garcia, A. Gonzalez, B. G. Kardak, J. M.
Odriozola, M. Oiarbide, J. Razkin, C. Palomo,
Chem. Eur. J. 2008, 14, 8768.
[7] a) R. Itooka, Y. Iguchi, N. Miyaura, J. Org.
Defieber, C. R. J. Stephenson, E. M. Carreira,
Tokunaga, T. Hayashi, Tet. Asymm. 2006, 17,
607; d) J. A. Marshall, M. Herold, H. S. Eidam,
In conclusion, by direct addition of or- tives was observed, and resulted in a de-
ganometallic reagents to α,β-unsaturated crease of reactivity and enantioselectivity.
aldehydes we obtained good regio- or Furthermore, γ-substituted-α-ketoesters
enantioselectivities but never both at the were used as chiral building blocks for
same time. With both Grignard reagents further derivatization. We obtained the
corresponding β-substituted aldehydes
per (iii) complex and forcing conversion and unnatural chiral α-amino acid precur-
to β-adduct, the regioselectivities are not sors with high yield, complete retention of
flawless. In contrast, alternative method- the chiral information and with promising
ologies are complementary and more se- diastereoselectivity.
P. Eidam, Org. Lett. 2006, 8, 5505.
[8] T. Nishikata, Y. Yamamoto, N. Miyaura, Chem.
and TMSCl as additive to trap the cop-
Commun. 2004, 1822.
[9] a) L. Mantilli, D. Gérard, S. Torche, C. Besnard,
b) L. Mantilli, C. Mazet, Chem. Commun. 2010,
46, 445; c) L. Mantilli, D. Gérard, S. Torche,
C. Besnard, C. Mazet, Chem. Eur. J. 2010, 16,
12736; d) A. Quintard, A. Alexakis, C. Mazet,
lective. β,γ-unsaturated-α-ketoesters were
Received: January 5, 2012
shown to be very efficient substrates for the
Cu-catalyzed ACA. A wide range of aryl
and alkyl derivatives were tolerated under
our reaction conditions to give full conver-
sion and regioselectivities up to 99.5% ee.
However, a strong electronic, steric, and
chelating effect with aryl methoxy deriva-
[10] a) A. Erkkilä, I. Majander, M. Pihko, Chem.
Rev. 2007, 107, 5416; b) A. Quintard, A.
Alexakis, Chem. Commun. 2011, 47, 7212;
c) A. Quintard, A. Lefranc, A. Alexakis, Org.
Lett. 2011, 13, 1540; d) B. Alonso, E. Reyes, L.
Carrillo, J. L. Vicario, D. Badia, Chem. Eur. J.
2011, 17, 6048; e) J. L. G. Ruano, C. Alvarado,
S. Diaz-Tendero, J. Aleman, Chem. Eur. J.
2011, 17, 4030; f) S. Afewerki, P. Breistein,
K. Pirttila, L. Deiana, P. Dziedzic, I. Ibrahem,
A. Cordova, Chem. Eur. J. 2011, 17, 8784; g)
I. Ibrahem, S. Santoro, F. Himo, A. Cordova,
O
OMe
O OMe
Me
Me
∗
∗
∗
∗
b)
4eq. NaCNBH3
N
H
NH
Adv. Synth. Catal. 2011, 353, 245; h) J. Deng,
F. Wang, W. Yan, J. Zhu, H. Jiang, W. Wang, J.
Li, Chem. Comm. 2012, 48, 148 i) I. Ibrahem, P.
Breistein, A. Còrdova, Angew. Chem. Int. Ed.,
(S) (R)
(S) (S)
2eq.p-Anisidin
e
0.4 eq. AcO
H
CH2Cl2,o.n., r.t.
O
OH
OH
Me O
2eq. Me Al
3
OEt
OEt
61
62
[11] a) K. B. Jensen, J. Thorhauge, R. G. Hazell, K.
5mol% Cu
5mol% (R)-BIN
HF,1 h, -78°C
TC
Yield =88%; >99% Regio., dr =3:1,ee =99%
AP
O
O
160; b) F. Palacios, J. Vicario, D. Aparicio, Eur.
T
7
R
R
Me O
J. Org. Chem. 2006, 2843; c) R. P. Herrera, D.
Monge, E. Martin-Zamora, R. Fernandez, J. M.
Lassaletta, Org. Lett. 2007, 9, 3303; d) S. L.
Zhao, C. W. Zheng, H. F. Wang, G. Zhao, Adv.
b)
3drops of H O
2
∗
2
8: R=H
H
3eq. NaB 4
c)
SiO supp. NaIO
4
H
(S)
4
2: R=i-Pr
2
Synth. Catal. 2009, 351, 2811; e) M. Yan, R. J.
Lu, Y. Y. Yan, J. J. Wang, Q. S. Du, S. Z. Nie,
J. Org. Chem. 2011, 76, 6230; f) Q. S. Hu, C.
H. Xing, Y. X. Liao, J. Ng, J. Org. Chem. 2011,
6
3
Yield =90%, >99% Regio., ee >99.5%
Scheme 2. Synthesis of unnatural α-amino acid precursors and (S)-Florhydral.