WWW.POLYMERCHEMISTRY.ORG
ARTICLE
9 Eichenbaum, G. M.; Kiser, P. F.; Dobrynin, A. V.; Simon, S.
A.; Needham, D. Macromolecules 1999, 32, 4867–4878.
CONCLUSIONS
In conclusion, a new system for potential enzymatic- and
light-triggered release applications based on degradable
nanogels was successfully developed. Realization of this con-
cept was achieved with newly synthesized water soluble
crosslinking molecules consisting of vinyl functionalized dex-
trans. In addition to the inherent enzymatic cleavability of
the dextran backbone upon incubation with dextranase, light
sensitivity was incorporated into the crosslinking structure
by the covalent attachment of multiple radically polymeriz-
able acrylate units via a photolabile linkers to the polysac-
charide chains. The resulting Dex-PL-A structures are charac-
terized by their good water solubility which—in combination
with multiple vinyl groups per chain—offers the possibility
for the preparation of a broad range of enzymatic- and light-
degradable (nano-)gels by copolymerization with different
vinyl functionalized monomers from aqueous solutions. As a
first model system, AAm was copolymerized with Dex-PL-A
in an inverse miniemulsion. High-crosslinking efficiency of
the resulting p(AAm-co-Dex-PL-A) nanogels was achieved by
systematic increasing the Dex-PL-A/AAm ratio. It was shown
that irradiation with UV light induced either complete parti-
cle degradation or a desired specific DGS by adjusting the
irradiation time accordingly. In addition, a two-step degrada-
tion profile based on the subsequent appliance of the two
orthogonal stimuli was realized by first generating highly
swollen nanogels by partial enzymatic cleavage of the Dex-
PL-A crosslinking molecules and their successive complete
degradation upon irradiation. The facile way of preparation
at ambient temperatures of 37 ꢀC from aqueous solutions
and the observed low initial DGS is promising for the poten-
tial embedding of functional water soluble compounds al-
ready during the polymerization. In combination with the
well-defined degradation profiles, this feature renders these
new materials highly interesting for triggered release appli-
cations in aqueous dispersions.
10 Goh, S. L.; Murthy, N.; Xu, M. C.; Frechet, J. M. J. Bioconju-
gate Chem. 2004, 15, 467–474.
11 Murthy, N.; Thng, Y. X.; Schuck, S.; Xu, M. C.; Frechet, J. M.
J. J. Am. Chem. Soc. 2002, 124, 12398–12399.
12 Bulmus, V.; Chan, Y.; Nguyen, Q.; Tran, H. L. Macromol.
Biosci. 2007, 7, 446–455.
13 Jhaveri, S. B.; Carter, K. R. Macromolecules 2007, 40,
7874–7877.
14 Franssen, O.; vanOoijen, R. D.; deBoer, D.; Maes, R. A. A.;
Herron, J. N.; Hennink, W. E. Macromolecules 1997, 30,
7408–7413.
15 Franssen, O.; van Ooijen, R. D.; de Boer, D.; Maes, R. A. A.;
Hennink, W. E. Macromolecules 1999, 32, 2896–2902.
16 Abdurrahmanoglu, S.; Firat, Y. J. Appl. Polym. Sci. 2007,
106, 3565–3570.
17 Hennink, W. E.; Talsma, H.; Borchert, J. C. H.; DeSmedt, S.
C.; Demeester, J. J. Controlled Release 1996, 39, 47–55.
18 Chiu, H. C.; Hsiue, G. H.; Lee, Y. P.; Huang, L. W. J. Bio-
mater. Sci. Polym. Ed. 1999, 10, 591–608.
19 Franssen, O.; Stenekes, R. J. H.; Hennink, W. E. J. Controlled
Release 1999, 59, 219–228.
20 vanDijkWolthuis, W. N. E.; Tsang, S. K. Y.; Kettenesvanden-
Bosch, J. J.; Hennink, W. E. Polymer 1997, 38, 6235–6242.
21 vanDijkWolthuis, W. N. E.; vanSteenbergen, M. J.; Under-
berg, W. J. M.; Hennink, W. E. J. Pharm. Sci. 1997, 86, 413–417.
22 Franssen, O.; Vandervennet, L.; Roders, P.; Hennink, W. E. J.
Controlled Release 1999, 60, 211–221.
23 De Geest, B. G.; De Koker, S.; Demeester, J.; De Smedt, S.
C.; Hennink, W. E. Polym. Chem. 2010, 1, 137–148.
24 Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Sci-
ence 2009, 324, 59–63.
25 Klinger, D.; Landfester, K. Soft Matter 2011, 7, 1426– 1440.
26 Piggott, A. M.; Karuso, P. Tetrahedron Lett. 2005, 46, 8241–
8244.
27 Holmes, C. P.; Jones, D. G. J. Org. Chem. 1995, 60,
2318–2319.
28 Reichmanis, E.; Smith, B. C.; Gooden, R. J. Polym. Sci. Part
A: Polym. Chem. 1985, 23, 1–8.
D. Klinger acknowledges the International Max Planck
Research School (IMPRS) for financial support.
29 Alvarez, M.; Best, A.; Pradhan-Kadam, S.; Koynov, K.; Jonas,
U.; Kreiter, M. Adv. Mater. 2008, 20, 4563–4567.
30 Klinger, D.; Aschenbrenner, E. M.; Weiss, C. K.; Landfester,
K. Polym. Chem. 2012, DOI: 10.1039/c1py00415h.
REFERENCES AND NOTES
31 Buhler, S.; Lagoja, I.; Giegrich, H.; Stengele, K. P.; Pfleiderer,
W. Helv. Chim. Acta 2004, 87, 620–659.
1 Nayak, S.; Lyon, L. A. Angew. Chem. Int. Ed. Engl. 2005, 44,
7686–7708.
32 Barzynski, H.; Sanger, D. Angew. Makromol. Chem. 1981,
93, 131–141.
2 Das, M.; Zhang, H.; Kumacheva, E. Annu. Rev. Mater. Res.
2006, 36, 117–142.
33 Landfester, K.; Musyanovych, A. In Chemical Design of Re-
sponsive Microgels. Pich, A. Richtering W., eds., Berlin Heidel-
berg: Springer; 2010; Vol. 234, pp 39–63.
3 Lin, C. C.; Metters, A. T. Adv. Drug Delivery Rev. 2006, 58,
1379–1408.
4 Hendrickson, G. R.; Smith, M. H.; South, A. B.; Lyon, L. A.
Adv. Funct. Mater. 2010, 20, 1697–1712.
34 Landfester, K. Angew. Chem. Int. Ed. Engl. 2009, 48, 4488–
4507.
5 Eichenbaum, G. M.; Kiser, P. F.; Shah, D.; Simon, S. A.;
Needham, D. Macromolecules 1999, 32, 8996–9006.
35 Landfester, K.; Willert, M.; Antonietti, M. Macromolecules
2000, 33, 2370–2376.
6 Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V. Adv. Drug
Delivery Rev. 2002, 54, 135–147.
36 Al-Manasir, N.; Zhu, K. Z.; Kjoniksen, A. L.; Knudsen, K. D.;
Karlsson, G.; Nystrom, B. J. Phys. Chem. B 2009, 113, 11115–
11123.
7 Nayak, S.; Gan, D. J.; Serpe, M. J.; Lyon, L. A. Small 2005, 1,
416–421.
37 Lecner, M. D. J. Serb. Chem. Soc. 2005, 70, 361–369.
38 Holmes, C. P. J. Org. Chem. 1997, 62, 2370–2380.
8 Nayak, S.; Lee, H.; Chmielewski, J.; Lyon, L. A. J. Am. Chem.
Soc. 2004, 126, 10258–10259.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 1062–1075
1075