Table 3 Scope of the regioselective arylation of chromenonesa
We acknowledge the financial support of the Iran National
Science Foundation (INSF) and the University of Tehran.
Notes and references
1 J.-T. Pierson, A. Dumetre, S. Hutter, F. Delmas, M. Laget,
J.-P. Finet, N. Azas and S. Combes, Eur. J. Med. Chem., 2010,
45, 864.
2 C. Bailly, C. Bal, P. Barbier, S. Combes, J.-P. Finet,
M.-P. Hildebrand, V. Peyrot and N. Wattez, J. Med. Chem.,
2003, 46, 5437.
Entry R1
R2, R3
Product Yieldb (%)
1
2
3
4
5
6
7
8
9
10
H 6a
H, H 2a
4-OCH3, H 2f
2-OCH3, 4-OCH3 2g 7c
4-CH2CH3, H 2c
4-CH3, H 2b
4-Br, H 2d
7a
7b
86
80
88
92
90
85
91
81
77
0
3 C. Rappl, P. Barbier, V. Bourgarel-Rey, C. Gregoire, R. Gilli,
M. Carre, S. Combes, J.-P. Finet and V. Peyrot, Biochemistry,
2006, 45, 9210.
4 C. Billard, F. Menasria, C. Quiney, A. M. Faussat, J.-P. Finet,
S. Combes and J. P. Kolb, Exp. Hematol., 2008, 36, 1625.
5 A. D. Patil, A. J. Freyer, D. S. Eggleston, R. C. Haltiwanger,
M. F. Bean, P. B. Taylor, M. J. Caranfa, A. L. Breen,
H. R. Bartus, R. K. Johnson, R. P. Hertzberg and
J. W. Westley, J. Med. Chem., 1993, 36, 4131.
6 I. Kohler, K. Jenett-Siems, F. P. Mockenhaupt, K. Siems,
´
J. Jakupovic, J. C. Gonzalez, M. A. Hernandez, R. A. Ibarra,
W. G. Berendsohn, U. Bienzle and E. Eich, Planta Med., 2001,
67, 89.
7 R. Argotte-Ramos, G. Ramırez-Avila, M. C. Rodriguez-Gutierrez,
´
H 6a
H 6a
H 6a
H 6a
H 6a
7d
7e
7f
7-OCH3 6b 2-OCH3, 4-OCH3 2g 7g
7-OCH3 6b H, H 2a
7-OCH3 6b 4-CH2CH3, H 2c
7h
7i
7j
H 6a
3-NO2, H 2e
a
b
All reactions were run under the optimized conditions. Isolated yields.
compatibility with the reaction conditions and resulted in
the halogenated coumarin 3m, a good partner for further
functionalizations, in high yield (80%, entry 13).
M. Ovilla-Munoz, H. Lanz-Mendoza, M. H. Rodriguez,
M. Gonzalez-Cortazar and L. Alvarez, J. Nat. Prod., 2006,
69, 1442.
Motivated by these results, we next sought to expand the
scope of our system to regioselective arylation of a more
challenging substrate such as 4H-chromen-4-one. Like cyclo-
hexenone, chromenone is a typical example of a substrate
where mixtures are commonly noticed.
8 L. Verotta, E. Lovaglio, G. Vidari, P. V. Finzi, M. G. Neri,
A. Raimondi, S. Parapini, D. Taramelli, A. Riva and
E. Bombardelli, Phytochemistry, 2004, 65, 2867.
9 S.-F. Wu, F.-R. Chang, S.-Y. Wang, T.-L. Hwang, C.-L. Lee,
S.-L. Chen, C.-C. Wu and Y.-C. Wu, J. Nat. Prod., 2011, 74, 989.
10 J. Zhao, Y. Zhao and H. Fu, Angew. Chem., Int. Ed., 2011,
50, 3769.
We were pleased to see that under our optimized reaction
conditions, the reaction of chromenone 6a and phenylboronic
acid 2a proceeded with high regioselectivity to afford the
desired C-2 arylated adduct 7a in 86% yield (Table 3, entry 1).
Furthermore, methoxy substituted arylboronic acids 2f and 2g
provided the desired products 7b and 7c in 80% and 88% yields,
respectively (entries 2 and 3). 4-Alkyl substituted arylboronic
acids 2c and 2b also reacted with high efficiency and selectivity,
resulting in the desired products 7d and 7e in 92% and 90%
yields, respectively (entries 4 and 5). 40-Brominated flavone 7f
was also obtained in high yield (entry 6).
11 (a) M. M. Garazd, Ya. L. Garazd and V. P. Khilya, Chem. Nat.
Compd., 2005, 41, 245; (b) S. Kutubi, T. Hashimoto and
T. Kitamura, Synthesis, 2011, 1283; (c) Y. Yamamoto and
N. Kirai, Org. Lett., 2008, 10, 5513.
12 (a) L. Zhang, T. Meng, R. Fan and J. Wu, J. Org. Chem., 2007,
72, 7279; (b) M. L. N. Rao, V. Venkatesh and D. N. Jadhav, Eur.
J. Org. Chem., 2010, 3945.
13 For selected recent examples see: (a) S. Oh, H. J. Jang, S. K. Ko,
Y. Ko and S. B. Park, J. Comb. Chem., 2010, 12, 548;
(b) S. Combes, J.-T. Pierson, J.-P. Finet, P. Barbier,
S. Douillard, V. Bourgarel-Rey, V. Peyrot, A. McLeer-Florin,
J. Boutonnat and A. Yu. Fedorov, J. Med. Chem., 2011, 54, 3153.
14 For selected recent examples see: (a) J.-i. Kuroda, K. Inamoto,
K. Hiroya and T. Doi, Eur. J. Org. Chem., 2009, 2251; (b) Y. Luo
and J. Wu, Tetrahedron Lett., 2009, 50, 2103; (c) W. Gao, Y. Luo,
Q. Ding, Y. Peng and J. Wu, Tetrahedron Lett., 2010, 51, 136;
(d) P. Y. Wong, W. K. Chow, K. H. Chung, C. M. So, C. P. Lau
and F. Y. Kwong, Chem. Commun., 2011, 47, 8328; (e) C.-H. Xing,
J.-R. Lee, Z.-Y. Tang, J. R. Zheng and Q.-S. Hu, Adv. Synth.
Catal., 2011, 353, 2051.
Next it was desirable to extend the scope of this regioselective
arylation reaction to construct methoxy flavones as a superior
cancer chemopreventive flavonoid subclass with high hepatic
metabolic stability.20 In this regard, 7-methoxy chromenone 6b
was reacted with 2,4-dimethoxyphenylboronic acid 2g and the
result was gratifying (91% yield, entry 7). Also the cross-coupling
of 6b with unsubstituted and alkyl substituted arylboronic acids
proceeded successfully, affording the desired products 7h and 7i
in 81% and 77% yields, respectively (entries 8 and 9). The
reaction of chromenone with nitro substituted boronic acid
was not successful (entry 10).
15 J. Wu and Z. Yang, J. Org. Chem., 2001, 66, 7875.
16 L. Xu, B.-J. Li, Z.-H. Wu, X.-Y. Lu, B.-T. Guan, B.-Q. Wang and
K.-Q. Zhao, Org. Lett., 2010, 12, 884.
17 R. D. Rieke and S.-H. Kim, Tetrahedron Lett., 2011, 52, 3094.
18 For some selected examples see: (a) K. Yoshida and T. Hayashi, in
Boronic Acids, ed. D. G. Hall, Wiley-VCH, Weinheim, 2005;
(b) K. S. Yoo, C. H. Yoon and K. W. Jung, J. Am. Chem. Soc.,
2006, 128, 16384; (c) S. L. Buchwald and R. Martin, Acc. Chem.
Res., 2008, 41, 1461; (d) S. Wurtz and F. Glorius, Acc. Chem. Res.,
2008, 41, 1523; (e) J. H. Delcamp, A. P. Brucks and M. C. White,
J. Am. Chem. Soc., 2008, 130, 11270; (f) J. Ruan, X. Li, O. Saidi
and J. Xiao, J. Am. Chem. Soc., 2008, 130, 2424;
(g) G. A. Molander and B. Canturk, Angew. Chem., Int. Ed.,
2009, 48, 9240; (h) M. Tobisu and N. Chatani, Angew. Chem., Int.
Ed., 2009, 48, 3565.
In summary, we have developed a versatile, regioselective
and atom economical arylation of chromenones. This protocol
provides a straightforward route to biologically interesting
flavone or neoflavone backbones. It takes advantages of the
regioselective heteroarene functionalization precluding its
prefunctionalization, the no base requirements and the
compatibility with a wide range of substituents including
OH and halo functionalities. Investigation on broadening
the scope of the reaction toward the synthesis of biological
active targets is currently underway.
19 (a) F. Jafarpour and P. T. Ashtiani, J. Org. Chem., 2009, 74, 1364;
(b) F. Jafarpour, S. Rahiminejadan and H. Hazrati, J. Org. Chem.,
2010, 75, 3109; (c) F. Jafarpour and H. Hazrati, Adv. Synth. Catal.,
2010, 352, 363.
20 T. Walle, Mol. Pharmaceutics, 2007, 4, 826.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2985–2987 2987