ORGANIC
LETTERS
2012
Vol. 14, No. 6
1596–1599
Expedient Enantioselective Synthesis of
Cermizine D
Nagarathanam Veerasamy, Erik C. Carlson, and Rich G. Carter*
Department of Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis,
Oregon 97331, United States
Received February 11, 2012
ABSTRACT
An efficient enantioselective synthesis of cermizine D has been developed that exploits the use of a common intermediate to access over 85% of
the carbon backbone. Key steps include an organocatalyzed heteroatom Michael addition, a diastereoselective alkylation with R-iodomethyl
phenyl sulfide, a conjugate addition to a vinyl sulfone species, and a sulfone coupling/desulfurization sequence to join the two major subunits.
Cermizine D (1) was isolated in 2004 by Kobayashi and
co-workers from the club moss Lycopodium cernuum and
displaced modest cytotoxicity aginst murin lymphoma
L1210 cells (7.5 μg/mL).1 Related cermizine alkaloids have
attracted the attention of several laboratories.2 To date,
one elegant 18-step total synthesis of 1 has been reported
by Takayama and co-workers.3 Herein, we report an
efficient, enantioselective synthesis of cermizine D, which
exploits the use of a common intermediate strategy to
access two of the three piperidine rings.
Our retrosynthetic strategy is shown in Scheme 1. We
envision that the C7ÀN bond could be formed through an
intramolecular SN2-type cyclization of alcohol 2. Alcohol
2 would in turn be accessible from a sulfoneÀaldehyde
coupling/desulfurization sequence using sulfone 3 and
common intermediate 4. Sulfone 3 would be accessible
from the same common intermediate 4.
The synthesis commenced with the commercially avail-
able amine 5 (Scheme 2). The amine can also be conveni-
ently prepared from 1-bromo-5-hexene through a two-step
sequence.4 Subsequent Boc protection gave the known
alkene 6.5 After cross-metathesis using crotonaldehyde,
intramolecular heteroatom Michael addition (under a
(1) Morita, H.; Hirasawa, Y.; Shinato, T.; Kobayashi, J. Tetrahedron
2004, 60, 7015–7023.
(2) (a) Snider, B. B.; Grabowski, J. F. J. Org. Chem. 2007, 72, 1039–
1042. (b) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394–
8395. (c) Beng, T. K.; Gawley, R. E. J. Am. Chem. Soc. 2010, 132, 12216–
12217. (d) Cheng, G.; Wang, X.; Su, D.; Liu, H.; Liu, F.; Hu, Y. J. Org.
Chem. 2010, 75, 1911–1916. (e) Taber, D. F.; Guo, P.; Pirnot, M. T.
J. Org. Chem. 2010, 75, 5737–5739. (f) Chou, S.-S. P.; Chung, Y.-C.;
Chen, P.-A.; Chiang, S.-L.; Wu, C.-J. J. Org. Chem. 2011, 76, 692–695.
(3) (a) Nishikawa, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10,
1987–1990. (b) Nishikawa, Y.; Kitajima, M.; Kogure, N.; Takayama, H.
Tetrahedron 2009, 65, 1608–1617.
(4) Carlson, E. C.; Rathbone, L. K.; Yang, H.; Collett, N. D.; Carter,
R. G. J. Org. Chem. 2008, 73, 5155–5158.
(5) (a) Fustero, S.; Jimnez, D.; Moscard, J.; Cataln, S.; del Pozo, C.
Org. Lett. 2007, 9, 5283–5286. (b) Gerasyuto, A. I.; Hsung, R. P.;
Sydorenko, N.; Slafer, B. J. Org. Chem. 2005, 70, 4248–4256.
(6) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794–797. (b) Lin, Q.; Meloni, D.; Pan,
Y.; Xia, M.; Rodgers, J.; Shepard, S.; Li, M.; Galya, L.; Metcalf, B.;
Yue, T. Y.; Liu, P.; Zhou, J. Org. Lett. 2009, 11, 1999–2002.
r
10.1021/ol300342n
Published on Web 02/28/2012
2012 American Chemical Society