Table 2
t
F data for Tru, 2, 5, 7, 8 and 9 in 2-MeTHF (tw = this work)
Zn(P1) - Zn(P2) between 5 (1 Zn(P1)) and 8 (2 Zn(P1)) is
noted, which may be due to the long separation between the
two Zn(P1) in 8, and may act independently. No Zn(P1)
phosphorescence (703 nm)5b was detected and no kET(T1)
Zn(P1) - Zn(P2) data are available.
kET
nsꢁ1
298 K 77 K
/
kET/
nsꢁ1
77 K Ref.
/
,
tF/ns,
Chromophore 298 K
,
tF/ns,
Tru Tru
56.3 ꢂ 0.2
—
—
64.6 ꢂ 0.5
—
—
9
5b
tw
This work showed an increase in kET(S1) and kET(T1) going
from 2 to 4 antennas around a central unit. This effect is
relevant to photosystems where excitation energy delocalization
(exciton) takes place efficiently bringing the collected light
energy to the special pair in the reaction center. The observed
cooperativity may well be due to an excitonic effect like in the
natural systems.
2
5
Zn(P1)
Tru
1.45 ꢂ 0.06
1.71 ꢂ 0.03
0.54 ꢂ 0.02 1.8
0.26 ꢂ 0.08 3.2
0.20 ꢂ 0.09 4.9
0.29 ꢂ 0.05 2.9
Zn(P1)
Zn(P2)
Tru
Zn(P2)
Tru
1.67 ꢂ 0.02
—
1.68 ꢂ 0.56 0.58
1.88 ꢂ 0.03
—
1.17 ꢂ 0.21 0.84
7
8
tw
tw
1.57 ꢂ 0.05
—
0.89 ꢂ 0.17 1.1
0.31 ꢂ 0.05 2.6
1.65 ꢂ 0.04
—
0.19 ꢂ 0.04 5.0
0.19 ꢂ 0.05 4.7
Zn(P1)
Zn(P2)
Tru
1.80 ꢂ 0.02
—
0.77 ꢂ 0.24 1.3
1.88 ꢂ 0.06
—
—
—
a
PDH thanks the Natural Sciences and Engineering Research
Council of Canada (NSERC) for funding.
9
tw
9
a
Zn(P2)
10 Tru
Zn(P2)
1.66 ꢂ 0.02
—
0.80 ꢂ 0.03 1.2
1.68 ꢂ 0.02
0.39 ꢂ 0.06 2.6
2.25 ꢂ 0.03
Notes and references
a
Not Measured
1 W. Y. Wong and P. D. Harvey, Macromol. Rapid Commun., 2010,
31, 671.
Table 3 tP data for Tru, [Pt], 7 and 9–11 in 2-MeTHF (tw = this work)
2 (a) H. M. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon,
W. K. Chan, A. B. Djurisic, P. D. Harvey and W. Y. Wong,
Macromolecules, 2011, 44, 5155; (b) L. Liu, L. Hu, H. Fu,
Q. M. Fu, S. Z. Liu, Z. L. Du, W. Y. Wong and P. D. Harvey,
J. Organomet. Chem., 2011, 696, 1319.
Chromophore
tP, 77 K
kET/sꢁ1, 77 K
Ref.
Tru
[Pt]
7
Tru
[Pt]
Tru
Zn(P2)
Tru
[Pt]
Zn(P2)
Tru
620.2 ꢂ 0.3 ms
35.0 ꢂ 1.3 ms
12.6 ꢂ 1.0 ms
12.5 ꢂ 1.6 ms
2.1 ꢂ 0.2 ms
15.6 ꢂ 4.8 ms
11.2 ꢂ 0.5 ms
0.71 ꢂ 0.04 ms
25 ꢂ 0.4 ms
—
—
9
11b
tw
3 G. Langlois, S. M. Aly, C. P. Gros, J. M. Barbe and P. D. Harvey,
New J. Chem., 2011, 35, 1302.
7.8 ꢃ 101
—
4 (a) F. L. Jiang, D. Fortin and P. D. Harvey, Inorg. Chem., 2010,
49, 2614; (b) K. Onitsuka, H. Kitajima, M. Fujimoto, A. Iuchi,
F. Takei and S. Takahashi, Chem. Commun., 2002, 2576.
5 (a) D. Bellows, S. M. Aly, T. Goudreault, D. Fortin, C. P. Gros,
J. M. Barbe and P. D. Harvey, Organometallics, 2010, 29, 317;
(b) D. Bellows, S. M. Aly, C. P. Gros, M. El Ojaimi, J.-M. Barbe,
R. Guilard and P. D. Harvey, Inorg. Chem., 2009, 48, 7613;
(c) L. Liu, D. Fortin and P. D. Harvey, Inorg. Chem., 2009,
48, 5891; (d) A. Harriman, M. Hissler, O. Trompette and
R. Ziessel, J. Am. Chem. Soc., 1999, 121, 2516.
9
4.7 ꢃ 102
3.6 ꢃ 104
—
tw
10
11
1.3 ꢃ 103
9
Zn(P2)
[Pt]
Zn(P2)
—
12.6 ꢂ 0.8 ms
11.8 ꢂ 0.8 ms
5.1 ꢃ 104
—
5c
6 (a) L. G. Mackay, H. L. Anderson and J. K. M. Sanders, J. Chem.
Soc., Perkin Trans. 1, 1995, 2269; (b) L. G. Mackay, H. L. Anderson
and J. K. M. Sanders, J. Chem. Soc., Chem. Commun., 1992, 43.
7 (a) I. Fratoddi, C. Battocchio, R. D’Amato, G. P. Di Egidio,
L. Ugo, G. Polzonetti and M. V. Russo, Mater. Sci. Eng., C, 2003,
23, 867; (b) M. E. Amato, A. Licciardello, V. Torrisi, L. Ugo,
I. Venditti and M. V. Russo, Mater. Sci. Eng., C, 2009, 29, 1010.
8 (a) A. Baev, O. Rubio-Pons, F. Gel’mukhanov and H. Agren,
J. Phys. Chem. A, 2004, 108, 7406; (b) D. Beljonne, G. E. O’Keefe,
P. J. Hamer, R. H. Friend, H. L. Anderson and J. L. Bredas,
J. Chem. Phys., 1997, 106, 9439.
9 B. Du, D. Fortin and P. D. Harvey, Inorg. Chem., 2011, 50, 11493.
10 X. F. Duan, J. L. Wang and J. Pei, Org. Lett., 2005, 7, 4071.
11 (a) L. A. Emmert, W. Choi, J. A. Marshall, J. Yang, L. A. Meyer
and J. A. Brozik, J. Phys. Chem. A, 2003, 107, 11340;
(b) K. Gagnon, S. M. Aly, A. Brisach-Wittmeyer, D. Bellows,
J.-F. Berube, L. Caron, A. S. Abd-El-Aziz, D. Fortin and
P. D. Harvey, Organometallics, 2008, 27, 2201.
12 (a) K. M. Kadish, N. Guo, E. Van Caemelkbecke, A. Froiio,
R. Paolesse, D. Monti, P. Tagilatesta, T. Boschi, L. Prodi, F. Bolleta
and N. Zaccheroni, Inorg. Chem., 1998, 37, 2358; (b) J. M. Camus,
S. M. Aly, C. Stern, R. Guilard and P. D. Harvey, Chem. Commun.,
2011, 47, 8817.
13 (a) M. S. Yuan, Q. Fang, Z. Q. Liu, J. P. Guo, H.-Y. Chen,
W. T. Yu, G. Xue and D.-S. Liu, J. Org. Chem., 2006, 71, 7858;
(b) M. S. Yuan, Z.-Q. Liu and Q. Fang, J. Org. Chem., 2007,
72, 7915; (c) J. L. Wang, Z.-M. Tang, Q. Xiao, Q. F. Zhou, Y. Ma
and J. Pei, Org. Lett., 2008, 10, 17.
14 (a) S. Faure, C. Stern, R. Guilard and P. D. Harvey, J. Am. Chem.
Soc., 2004, 126, 1253; (b) S. Faure, C. Stern, E. Espinosa,
R. Guilard and P. D. Harvey, Chem.–Eur. J., 2005, 11, 3469.
15 D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
Chart 2 Structures of 10–12.
electron exchange stressing the need for a good donor–acceptor
orbital overlap and is bound to be sensitive to the dihedral angle
between the truxene and porphyrin planes. The n-hexyl groups
on the Tru unit render this aryl bulky and n-hexyl/n-hexyl
steric interactions increase the dihedral angle towards a poorer
orbital overlap as previously demonstrated using computer
modeling for 10.9 Such a steric situation does not exist with
[Pt] and the smaller dihedral angle is driven by the b- and
ortho-hydrogen contacts of the phorphyrin and phenyl groups.
Therefore, [Pt] is most likely to exhibit a better donor–acceptor
orbital overlap, and a faster kET(T1) [Pt] - Zn(P2) value.
The kET(S1) Zn(P1) - Zn(P2) data in 5 and 8 are similar to
each other (2.6 o kET o 4.7 (ns)ꢁ1), but are slower than that
found in 12 (25 (ns)ꢁ1).12 This is consistent with the shorter
donor–acceptor distance in 12. However, no change in kET(S1)
16 T. Forster, Ann. Phys., 1948, 437, 55.
¨
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2671–2673 2673